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EXECUTIVE SUMMARY

The Center for Remote Sensing at Michigan State

University is proud of its continuing strength, activities,
and contributions to remote sensing and information systems

in the state, the nation, and internationally. The strength

of the present Center, and probably its very existence,

would not be possible without the support that NASA has

provided to MSU for over fifteen years. Three distinct

phases in the life of the Center have occurred. First was a

technology transfer center, almost exclusively with the

support of a NASA university programs grant. Then, as NASA
evolved to encourage centers of excellence with emphasis on

research and innovative development, the MSU Center for

Remote Sensing grew into a recognized research and

innovation facility. The present phase of the Center (the

post-NASA support phase) finds the Center continuing to grow
and contribute to the remote sensing and spatial information

communities. We are particularly proud of this evolution

since some centers around the country folded without NASA's

support during this period.

The overall objectives and strategies of the Center

remain to provide a center of excellence for multi-

disciplinary scientific expertise to address land-related

global habitability and earth observing systems scientific
issues. In addition, however, an extensive effort in the

Center has been involved with geographic information

systems. We now have growing expertise in the ability to
combine a variety of spatial information such as soils,

vegetation, and hydrogeologic characteristics, with
information directly compiled from remote sensing. Studies

are conducted on surface energy fluxes as affected by

edaphic, vegetative, topographic, and meteorological
conditions to evaluate subsequent impacts on hydrology and

biological productivity of ecosystems. Investigations
involve climate zone analysis, land form productivity, unit

delineation, vegetative characteristics, and change

detection. Emphasis is particularly placed on assisting

decision makers and planners with the information obtained.

An additional component has been the rapid advance of

coupling hydrologic information from well logs, aquifer

maps, and water quality data. This has allowed for a more
complete coupling of the earth's physical system to assist

with planning in the environmental and ecological realms.

Specific research projects that have been underway with

the support of NASA during the final contract period include

the following:
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i•

Digital Classification of Coniferous Forest Types in
Michigan's Northern Lower Peninsula from Landsat
Multispectral Scanner Data

• A Physiographic Ecosystem Approach to Remote

Classification and Mapping of Forest Biomass

•

Land Surface Change Detection and Inventory Update
Using Satellite Data and a Geographic Data Base

• Analysis of Radiant Temperature Data from the

Geostationary Operational Environmental Satellites

•

Development of Methodologies to Assess Possible Impacts

of Man's Changes of Land Surface on Meteorological
Parameters

Output from this period's efforts have resulted in a

number of formal papers and presentations at scientific

meetings• These results have been published in refereed

journals, proceedings, or in abstracts of meetings•

Significant products are included in the appendix of this
report.

Significant progress in each of the five project areas
has occurred• Summaries on each of the projects are

provided in the next section of this report•
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DIGITAL CLASSIFICATION OF CONIFEROUS FOREST TYPES IN

MICHIGAN'S NORTHERN LOWER PENINSULA FROM LANDSAT

MULTISPECTRAL SCANNER DATA

Carl W. Ramm

Department of Forestry, MSU

William D. Hudson

Center for Remote Sensing, MSU

Department of Forestry, MSU

This study has evaluated the use of Landsat multi-

spectral scanner digital data for classifying and mapping
coniferous forest cover types. All analyses were conducted

on a Landsat scene obtained on February 26, 1979 which is

centered in the north-central Lower Peninsula of Michigan.

The scene recorded a landscape under a ubiquitous snow cover

with coniferous forests providing the only green-foliage

reflectances in the entire scene. Two test sites were

chosen, one in Wexford County and the other in Crawford

County, to be representative of areas now supporting large

acreages of conifers. Cover type maps of the two test sites

were prepared from aerial photography, digitized, and then
rectified to match the Landsat data files. Subsequent

classifications from the Landsat data were compared with

these ,'reference" files to produce error matrices.

Several standard digital analysis techniques

(i.e. algorithms available on the ERDAS micro-computer;

unsupervised clustering, minimum distance-to-means, and

maximum likelihood) were utilized to classify the test
sites. In addition, the effect of varying the values of

input parameters on the accuracy of the unsupervised
clustering algorithm was evaluated. Level slicing was also

employed with unsupervised clustering in an effort to
minimize the effect of a large number of non-forest

clusters.

A spectral response curve model was developed from

analysis of the multispectral reflectance patterns exhibited

by the coniferous cover types and the background features.

The predicted brightness values from the model were utilized
to construct a linear-combination classifier which was also

tested for classification accuracy.

In order to evaluate the effectiveness of the cover

type maps as verification sources, tests were conducted

using aerial photography as the "ground truth." Discre-
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pancies were noted between the two methods and possible
causes investigated.

Each of the classification techniques was evaluated

with respect to its overall classification accuracy, the

magnitude and source of errors, the ranking and significance

based upon the kappa statistic, the number of categories
obtainable, execution time required, and the need for

additional analysis•

The major findings of this study can be summarized as
follows:

I. Unsupervised clustering, using default parameters,

provided the least accurate (80.3 percent)

classification of the Wexford County test site and

was ranked sixth of 8 for the Crawford County test
site. This algorithm produced a large number of

errors, both of omission and commission, and was

especially error prone where stands were small

and/or irregularly spaced.

• The only input variable which consistently

affected the classification performance of the

clustering technique was the maximum allowable
cluster radius. The reduction of this variable

from seven to three digital counts increased the

accuracy from 80.3 to 82.2 percent and from 73.2

to 73.5 percent for the Wexford County and

Crawford County test sites, respectively.

• Level slicing of the scene prior to clustering

increased the accuracy for the Wexford County test

site, but had the opposite effect for the Crawford

County test site. Clustering level sliced scenes

in conjunction with a smaller allowable cluster

radius improved accuracies for both test sites•

• With one exception, the supervised classification

algorithms, minimum distance-to-means and maximum

likelihood, had higher overall classification

accuracies than did the unsupervised clustering
algorithms•

• The minimum distance-to-means algorithm was more

accurate than the maximum likelihood algorithm

over the Wexford County test site but the opposite

was true for the Crawford County test site. More

errors of omission occurred, compared to

commission errors, and were largely attributable

to lightly stocked stands, (<50% crown closure)•
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ii.

A spectral response curve model was developed

which could predict brightness values from various
mixtures of conifers and background features. The

predicted brightness values from stands containing
a mixture of conifers and background features

demonstrated that the magnitude of change in

reflectivity from band 5 to band 6 provides the
most consistent measure for discriminating among

the cover types•

Even a simplistic version of a two-band linear-

combination classifier (BV6-BVS) was more accurate

than either clustering with default parameters or

clustering with a smaller allowable cluster radius

for the Wexford County test site. Over the

Crawford County test site, this algorithm was more
accurate than clustering of a level sliced Scene.

A slightly more sophisticated linear-combination
classifier which uses the (BV6-BV5) data in

conjunction with the absolute band 6 brightness

value (i.e. BV6, BV6-BV5) produced the most
accurate classifications, 84.0 and 73.8 percent

for Wexford and Crawford Counties, respectively.

Post-classification analysis of aerial photography

indicated that approximately 33 percent of the

"errors" in Wexford County and 48 percent of the

"errors" in Crawford County were attributable to

map generalizations. Approximately half the
errors were attributed to boundary pixels, another

40 percent were associated with thinly stocked
stands• The remaining errors were caused by small

openings in the forest (below the minimum map size

but larger than the IFOV of the Landsat MSS).

The number of mappable categories varied among the

various algorithms• Unsupervised clustering

techniques produced, at most, three categories.

Supervised techniques produced from three to four

categories, while the linear combination

classifiers produced from three to five.

Execution time varied considerably. Unsupervised

clustering was the slowest, from four and a half
to six and a half hours; supervised techniques

were intermediate, from one and a quarter to one

and three quarter hours; and linear-combination
classifiers were the fastest, about one half

hour.



12. All of the algorithms tested require additional

analysis before classification is complete.

Except for the level sliced analysis, which

requires both pre- and post-analysis, each

algorithm requires one additional step to assign

categories to numeric results or to specify
training site data.

13. The relative performance of the algorithms
differed between the two test sites such that

different rankings were allocated to the

algorithms by site.

14. Overall classification accuracy was significantly

different between the two test sites. The major

contributing factors appeared to be the blocky

plantation pattern in Wexford County compared to
the scattered, heterogenous forest cover in

Crawford County. Even the least accurate

classification, 80.3 percent, for the Wexford

County test site was superior to the most accurate

classification, 73.8 percent, for the Crawford
County test site.

15. Digital classification techniques were more

accurate than visual interpretation of computer

enhanced, spring imagery (72.7 percent) over the

Crawford County test site, but were less accurate

than results from the Wexford County test site
(84.3 percent).

With respect to the above findings, certain conclusions

can be drawn on the appropriate use of Landsat multi-

spectral scanner data in forest resource inventory systems

under Lake States conditions. While digital classification

procedures can identify coniferous forests with acceptable

accuracy (approximately 90 percent), individual cover type

accuracies are highly variable. Accuracies range from over

90 percent to under i0 percent and also vary by site.

Forest cover type maps, as currently compiled, include

delineations of forest cover types and stand size and

stocking classifications which cannot be derived directly

from satellite data. Thus, Landsat multispectral scanner

data cannot entirely replace traditional, photo-derived

forest inventories. For more generalized types of

assessments, Landsat data is probably a sufficient, stand-
alone information source.

The greatest utility for Landsat data is likely to

occur in a comprehensive inventory system utilizing multi-
stage sampling. The availability of remotely sensed data at

several scales provides an efficient sampling technique over
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very large areas. A large number of fast, relatively
inexpensive measurements can be obtained from the satellite
data and correlated with samples from progressively higher-
resolution data sources, such as aerial photography and
eventually ground plots. Variable probability sampling,
with the probability of sample selection proportional to the
sizes (or acreages) estimated from the previous stage, are
formulated from additional information available at each
stage. At the last stage, measurements are collected in the
field and projected back through the sampling formula to
obtain estimates for the entire area. This technique is
especially suitable to large area inventories such as the
Forest Inventory and Analysis for the entire state conducted
by the U.S. Forest Service. The last analysis of Michigan

(1980) utilized aerial photography as the first level of

sampling. A total of 176,976 1-acre plots were classified

from the photography. A sample of these plots (83,103) were
classified stereoscopically by forest type, stand-size

class, and density, and finally 13,991 of these points were

measured on the ground. Using Landsat data to stratify
forest land as a first level of a multi-stage sample would

provide more accurate survey data, or similar accuracies
with a smaller sample size. In addition, the Landsat

classification would provide a spatial component to the

distribution of forest cover types unobtainable from current

Forest Inventory and Analysis procedures.

Considering the level and accuracy of information

obtainable, the Landsat system is extremely efficient. One

Landsat scene covers 13,225 square miles and would require

approximately 5,000 aerial photographs (at a scale of

1:15,840 with 60 percent endlap and 30 percent sidelap) to
cover the same area. Computer compatible tapes for a single

Landsat scene cost $660 compared to $150,000 x for the

acquisition of medium-scale aerial photography. Although
the minimum configuration of a computer system to process

the Landsat data is approximately $24,000, compared to

$2,000 for photointerpretation equipment, a single scene

could be processed within several days compared to several

months to interpret aerial photography for an equivalent
area. The decision to utilize satellite data or aerial

photography will obviously depend upon an analysis of both
information requirements and the associated costs.

The high temporal frequency of Landsat data acquisi-

tion, an 18-day repetitive acquisition cycle, could also be

exploited for inventory updating requirements. Landsat data

iApproximate cost for the acquisition of 1:15,840,
black-and-white infrared aerial photography based upon a

cost of $19.20 per flight line mile.



and high-altitude aerial photography could provide a cost-
effective technique for updating the state-wide Forest

Inventory and Analysis. A multi-stage sub-sample of plots
from the previous inventory would be utilized to derive

"change coefficients" to update acreages, volumes, and

growth projections to a mid-cycle point. Landsat data have

also been suggested as a source for updating the state-wide

current use inventory. The advantages of using Landsat are

that only land use changes, not an initial inventory, would

need to be identified and that the digital nature of the

data could possibly be used to automatically update current

computer files. In addition, the Landsat system might
provide data for monitoring changes in forest areas over

short time-frame events (e.g. forest fires or defoliation

due to insects or disease).

Although current capabilities of processing Landsat
data can provide valuable inputs into forest resource

assessments, further research and newer satellite systems
should be considered. For example, since the linear

combination classifier is based upon a spectral response

curve model which integrates the spatial proportion of

conifer versus background in the IFOV, it may also provide a
measure of stocking or density. Further research should

investigate this relationship and its potential for
"automating" broad-area forest stand classification. In

addition, characteristic response curves should be

investigated from other seasons to test the validity of the

spectral response curve model for possible application to

classifying and mapping deciduous forest cover types.

Several new systems, including the Thematic Mapper on
board Landsat 4 and 5 and the French SPOT satellite, offer

increased spatial resolution (30 and I0 meters, respec-

tively) compared to the multispectral scanner. Although
increased spatial resolution should decrease the effects of

boundary pixels, the smaller IFOV might be problematic in
areas of dispersed forest cover such as encountered in the

Crawford County test site. The full ramifications of

increased spatial resolution on overall classification

accuracy would need to be fully investigated. Increased

spectral and radiometric resolution from the Thematic Mapper

has the potential of improving discrimination among similar

cover types (e.g. species of pines) and should also be
investigated.

Ecological considerations, especially the effect of
site on the choice and performance of various classification

schemes, need to be more fully assessed. Both overall

classification accuracy and the relative performance of the

algorithms tested in this study were significantly different

between the two sites. Signature extension does not appear



to be valid across an area the size of the northern lower

Peninsula. Therefore, stratification of the scene, possibly

along major landform units, should be tested as a possible

mechanism for allocating individual classification

techniques.





A PHYSIOGRAPHIC ECOSYSTEMAPPROACHTO REMOTECLASSIFICATION
AND MAPPING OF FOREST BIOMASS

Kurt S. Pregitzer
Department of Forestry, MSU

Carl W. Ramm
Department of Forestry, MSU

William D. Hudson
Center for Remote Sensing, MSU

Department of Forestry, MSU

David P. Lusch
Center for Remote Sensing, MSU

Department of Forestry, MSU

Within a regional climate, a strong relationship exists
between physiography and the location and productivity of
forest ecosystems (Barnes et al., 1983, Pregitzer et al.,
1983, Pregitzer and Barnes, in press). We believe that on a
global scale, understanding the relationships between
physiography, soil, and vegetation will eventually enable
estimation of rates of forest biomass accumulation and net
primary productivity via remote sensing. We propose to test
the hypothesis that forest ecosystem productivity can be
classified and mapped using high-altitude color infrared
photography. The research project described capitalizes on
an ongoing forest ecosystem classification and productivity
research program.

Overall, physiography is probably the single most
important ecosystem component. A priori, physiography

(including landforms and soils) provides the best means of

distinguishing ecosystem productivity at the local level

because it is the most stable of ecosystem features. It

strongly controls regional and local climate, soil moisture,

and related nutrient conditions, and forest composition. In

addition, relationships among physiography, soil, and

vegetation may be the key to remote sensing of potential

biomass productivity.

Rowe (1969) regarded landform as not only the surface

configuration but noted that surface forms reflect the

history of geological materials, depQsited or eroded. Rowe

makes a powerful case for landform -- a case that is borne

out by field ecologists:

It is, therefore, possible in the field and on

aerial photographs to correlate geomorphology with

the geological materials beneath, and this

integration of form and structure will be referred
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to hereafter as "landform." As Hills (1950) has
asserted, landform constitutes the relatively
stable base of the landscape ecosystem and is,
therefore, its best taxonomic feature, but more
than this the landform has a "genetic"
significance. It is the parent alike of the
climate that extends upward from its surface and
of the soil that appends beneath. It determines
among other things what energy from the sun is
intercepted and how it is dissipated. It controls
the infiltration and storage of moisture and
thereby the regimes of soil aeration and chemical
composition.

Physiography is also extremely valuable because it can
be used to map ecosystems from remotely sensed imagery once
the relationships among physiography, vegetation, and soils
are known. We have systematically studied these
relationships in the late-successional Upper Michigan forest

(Barnes et al., 1982, Pregitzer and Barnes, 1982, Pregitzer

et al., 1983, Spies, 1983, Pregitzer and Barnes, in press).

In our ecosystem analysis of the Cyrus H. McCormick

Experimental Forest (Barnes et al., 1982), the mapping was

greatly expedited by the use of aerial photographs. We also

found a very strong relationship between soil nutrients,

ground cover vegetation, and physiography (Pregitzer et al.,

1983).

More recently, we have found a strong relationship

between physiographic ecosystems (defined by characteristic

combinations of physiography, soil, and vegetation) and

forest productivity in the Huron-Manistee National Forest of

Michigan (Pregitzer, Ramm, and Hart, unpublished). In this

research, we have stratified the landscape into different

physiographic (geomorphic) features (e.g., outwash plains,

low ice-contact hills, interlobate moraines, etc.) which

represent functionally different ecosystems, each with a

characteristic potential vegetation and relatively

homogeneous soils (Hudson and Lusch, 1984). Initial results

suggest that rates of forest biomass production are

significantly different among the ecosystem units. Our

working hypothesis is that physiographically distinct forest

ecosystems can be delineated through field studies and the

analysis of remotely sensed imagery.

The initial remote sensing analysis was conducted over

previously established plots in the Huron-Manistee National

Forest. Photointerpretation was completed for five stands

using U.S. Forest Service, 1:12,000 color infrared aerial

photography. Despite the increased scale (twice that of the

previously studied photography from the Michigan Department

of Natural Resources) and generally excellent photo quality,
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individual species composition of stands could not be
consistently obtained. At best, broad cover types (e.g.
beech-maple, northern red oak) are the most detailed
interpretations which can probably be extracted from this
type of imagery. A summary of the most salient features of
these stands is attached.
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Stand number: 40 (Sites A-D)

Location: Wexford County
T.23N. - R.10W., Section 35, SW 1/4

Landform: Cadillac Outwash Plain

Forest Cover Type: 60 Beech-sugar maple

Species: sugar maple, beech, red oak, big tooth aspen,

white ash, black cherry, ironwood, white pine, red

pine, red maple, basswood, quaking aspen

Three types of stand structure are associated with the

beech-sugar maple type, I) dense sapling and small pole

sized stands, individual crowns are undetectable, tones are

very mottled with light pinks and whites, 2) pole sized

stands which display varying tones, crown shapes and sizes,

the stand structure is moderately uneven, and tones are

predominantly light pinks with a few white tones, and 3)

highly structured stands with more definite crown outlines,

a district stand pattern (alligator skin or mud cracks), and

fewer light pink tones with no white tones. The light pink

to white tones are characteristic of sugar maple, and to a

lesser degree, red maple, and are especially prominent in

sapling and small pole sized stands, for larger trees which

are open grown or in sparsely stocked stands, and for edge

trees. Species composition, stand structure, and canopy

geometry all effect tonal reflections as displayed on the

aerial photography. The directly illuminated side of a

crown will appear brighter than the side which is in partly
shadow.

Species Characteristics:

sugar maple

tone: light red-pink-white

crown: broadly rounded, side branches may extend

beyond the general crown

crown diameter/tree height ratio: .25 - .70
beech

tone:

crown:

red maple

tone:

crown:

dull red-dark red

smooth, slight taper towards apex

crown diameter/tree height ratio:

black cherry

tone: dull red

crown: thin (can see through)

crown diameter/tree height ratio:

red-pink

ascending branches, slightly more pointed

than sugar maple

.50

.4O
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Stand number: 41 (Sites E-L)

Location: Wexford County

T.23N. - RIOW., Section 35, E 1/2

Section 36, W 1/2

Landform: Cadillac Outwash Plain

Meauwataka Stagnation Moraine

Forest Cover Type: 60 Beech-sugar maple

55 Northern red oak

Species: northern red oak, sugar maple, black cherry,

basswood, beech, white ash, bigtooth aspen, red

maple

lowland: quaking aspen, white pine, red maple,

hemlock

northern red oak

tone: bright red-red (dark)

crown: massive, broad, may be divided into segments,

rougher texture than sugar maple (in closed

stands), branches do not protrude beyond

general crown outline

stand structure: crowns do not close together

crown diameter/tree height ratio: .45-.70
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Stand number: 24 (Sites M-Q)

Location: Wexford County

T.21N. - R.12W., Sections i0 and 15

Landform: Briar Hill Moraine

Forest Cover Type: 26 sugar maple-basswood

16 aspen

Species: (26) northern red oak, white ash, sugar maple,

hemlock, beech, bigtooth aspen, basswood,

ironwood, white birch, black cherry, sassafras

(16) bigtooth aspen, hemlock, northern red oak,

sugar maple, red maple, beech

16 Aspen

tone: bright red

crowns: small, rounded, may be somewhat intermingled

crown diameter/tree height ratio: .20-.30

26 Sugar maple - basswood

tone: red to dark red with few pinks throughout

stand structure: rough texture, tree heights and

crown diameters variable
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Stand number: 20 (sites R-U)

Location: Manistee County

T.21N. - R.15W, Sections 14 and 23

Landform: Port Huron Moraine

Forest Cover Type: 55 Northern red oak

Species: northern red oak, white oak, black oak, bigtooth

aspen, red maple, black cherry, witchazel, beech,

sassafras, white pine

55 Northern red oak

tone: bigtooth aspen - bright red

red oak - light to dull red

overall - very few pinks (red maple)

texture: somewhat rough

stand structure: somewhat open

16



Stand number: 48 (Sites IA-C)

Location: Wexford County
T.21N. - R.12W., Section 30
(T.21N. - R.13W., Section 25 - Manistee County)

Landform: Stronach Outwash Plain

Forest Cover Type: 52 white oak-black oak-northern red oak

Species: black oak, northern pin oak, white oak, black
cherry, jack pine

black/northern pin oak
tone: dark red-brown
stand structure: open, rarely closed
crown diameter/tree height ratio: .20-.50

(white oak: .35 - .70)
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LAND SURFACECHANGEDETECTION AND INVENTORY UPDATE USING
SATELLITE DATA AND A GEOGRAPHICDATA BASE

William R. Enslin
Center for Remote Sensing, MSU

Department of Geography, MSU

Anil Jain

Department of Computer Science, MSU

Michael Scieszka

Michigan Department of Natural Resources

Research Objective

The objective of our research investigation was to

develop and evaluate category-specific interpretation rules

to detect deforestation and, subsequently, to identify the

type of land surface change using Landsat Thematic Mapper

(TM) data and information contained in a geographic data

base. Image segmentation and feature extraction techniques

were developed to detect changes in previously-mapped

forestlands. Feature-recognition rules were built to

identify the type of change based upon TM image properties

(spectral, textural, shape, context) of segmented regions
and area-associated information about corresponding features

in the GIS of the State of Michigan. Emphasis was placed on

the identification of new oil/gas wells.

Introduction

Land cover and land use information is one of the most

important factors needed to conduct effective land resource

management and research activities. Accurate and up-to-date

information on land surface patterns is required, not only

for natural resource use and ecological studies, but also

for scientific investigations of the atmosphere, radiation

balance, nutrient cycling, evapotranspiration, runoff, soil

conditions, and many others. The earth's surface is an

ever-changing mosaic of land cover and land use patterns.

Major land processes, such as deforestation,

desertification, and urbanization, are substantially

altering the mosaic as are the collective actions of many

other on-land activities. The distribution and rate of

change of major land-cover and land-use types is not known.

For example, there has been an increased utilization of

Michigan's forest resources for timber products, wood

energy, oil and gas exploration, recreation, and residential

development. These activities, as well as timber losses due

to fire, disease, and pests, can significantly change the
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pattern of the landscape and thereby dynamically alter
ecosystem characteristics.

State governments are increasingly recognizing the need
for current natural resource data and are implementing
statewide geographic information systems (GIS). At least 32
states have seriously explored or instituted comprehensive
natural resources information systems (Johannsen and
Sanders, 1982, Martinki, et al., 1984). These systems are
used for a wide variety of projects related to forestry,
agricultural crops, wildlife habitat, water resources, urban
development, and land use impacts. In Michigan, the
Michigan Department of Natural Resources is currently
operating the state GIS legislatively mandated under the
Michigan Resource Inventory Act (PA 204, 1979). It is a
multi-level GIS which contains 1978 photo-derived land
cover/use information.

A major problem with any GIS is how to keep the
inventory information up-to-datebecause land surface
features may change rapidly due to natural or human causes.
A good source of land cover/use data is needed to identify
changing land use patterns and to study the temporal
dynamics and complex interactions involved in major land
change processes such as deforestation. Remotely sensed
data acquired by satellite sensors, particularly the Landsat
series, are considered important sources for updating state
inventories. Numerous image processing, pattern
recognition, and image classification techniques have been
developed and tested for mapping land cover/use. Most of
these methods classify the image data on a per pixel basis
using statistical routines in the spectral domain of the
image set. To date, overall classification accuracy has
typically been low (<85%).

Recent investigations have shown that substantial
improvements in classifier performance can be made by

incorporating ancillary information into the recognition

process. This has lead to research in developing knowledge-

based expert systems for interpreting remote sensing images

(Tinney, et al., 1983). A major research challenge lies in

acquiring and representing the domain-specific knowledge and

determining a set of A.I. interpretation rules to accurately

classify the "real world" landscape recorded by remote

sensors. This project addressed the need for research in
this area.

Backqround

Many researchers have used multi-temporal Landsat data

for mapping the areal distribution of harvested areas (Rouse

et al., 1973, Aldrich, 1975, Lee, 1975, Murtha and Watson,
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1975, Orhaug et al., 1976, Lee et al., 1977, Bryant et al.,
1979, Banner and Lyndham, 1981, Hegyi and Quenet, 1981,
Wastenson et al., 1981, Park et al., 1983, Tucker et al.,
1984). Various digital approaches to detecting changes in
forestlands have been reviewed by Werth (1983).

In many instances the detection of forest disturbances
involves distinguishing vegetation signatures from
signatures of soil and other materials. Techniques which
enhance their separability should improve forest change
detection procedures. Numerous linear spectral band
combinations (Tucker, 1979) and vegetation indices have been
developed to provide better vegetative information. Perry
and Lautenschlager (1984) summarized some four dozen
vegetation indices. The perpendicular vegetation index
(vegetation reflectance departure from soil background) has
been used to divide a Landsat image into ten decision
regions corresponding to water, cloud tops, cloud shadows,
low, medium and high reflecting soils, low, medium, high
plant cover, and no data (Richardson and Wiegand, 1977).
The green vegetation index of Kauth and Thomas (1976), the
tasseled cap transformation, provides a measure of
vegetation density. Recent research with Landsat TM data
has documented a third image information plane in addition
to brightness and greenness which contains information on
the relative mix of vegetation and soil in the field-of-view
and therefore should provide more information as to the
percent of vegetation cover (Crist and Cicone, 1983, Crist

and Cicone, 1984).

Some previous studies have identified land surface

changes by comparing separate, independent classifications

derived from Landsat data acquired at different dates. This

post-classification comparison technique has been used to

identify forest clear cuts in southeastern Oklahoma and

classify regeneration sites into three age groups (0-6, 6-

15, and >15 years old) (Gregory et al., 1981). Researchers

have identified several problems with this approach (Stow et

al., 1980, Likens et al., 1982). Most notable is that the

detection accuracy of "from-to" changes approaches the

product of the accuracies of the two independent
classifications. Thus if both antecedent classifications

have an accuracy of 80% their potential change detection

accuracy would be only 64%.

Many different change-detection procedures have been

tested which use multi-temporal image sets. (Gramenopoulos,

1973, Price and Reddy, 1975, Malila, 1980, Robinove, et al.,

1981, Arndt, 1983). These techniques require two images of

the same area acquired on different dates. Commonly used,

multi-date, change-detection techniques include: image-

differencing, image-regression, image-ratioing, multi-date

21



classification, and change-vector analysis. Singh (1984)
evaluated the accuracy of six multi-date techniques in
detecting changes in tropical forest cover -- all accuracies
were below 80%.

Numerous problems are encountered in implementing these
multi-date, change-detection procedures. Precisely co-
registered images are required since positional inaccuracies
between image pairs adversely affects performance. The
classification accuracy of these multi-date techniques is
also degraded by time-dependent variations of the extrinsic
factors listed in Table I. The effects of many of these
factors can be maximized by selecting data collected on
anniversary dates with the same sensor, however, it is more
difficult to compensate for changes in phenologic conditions
or soil moisture (Burns, 1983).

Researchers have begun to incorporate ancillary
information into the image classification process as means
to improve accuracy. Collateral data have been used in pre-

classification scene stratification, post-classification

class sorting, and classification modification by increasing

the number of information channels or modifying prior

probabilities (Hutchinson, 1982). The use of topographic

information (elevation, slope, aspect) as additional

features in classifiers can improve forest classifier

accuracy because many forest types have preferred elevation

ranges and slope aspects (Strahler et al., 1978, Stow and

Estes, 1981, Williams and Ingram, 1981, Guindon et al.,

1982). Contextual information has also been incorporated

into classifiers to improve performance (Swain et al., 1981,
Tilton et al., 1982). It is clear from the literature that

substantial improvements in classification accuracy are made

where ancillary data are used in the classification process.

Initial efforts in automated image analysis emphasized

statistical pattern recognition approaches, but such methods

proved to be inadequate in situations requiring an awareness

of context or the use of other information. Other

techniques, currently being developed in the field of

artificial intelligence (A.I.), may provide more powerful

and _ccurate change detection and inventory update

capabilities than current statistical approaches. A.I.-

based techniques applied to automated image analysis tasks

closely parallel the human image interpretation process of

detection, identification, measurement, and problem-

solving. A previous work (Tinney et al., 1983) has reviewed

image interpretation procedures for both human and computer-

assisted image analysis as a basis for discussing the future

of A.I.-based systems.
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Table I. Consideration for Temporally Dependent Sources of

Change in Reflectance Between Data Sets (from

Burns, 1983, p.3)

Atmospheric Differences

Clouds

Haze

Humidity

Dust

Seasonal Differences

Solar Illumination Angle

Phenologic Stage

Surface Differences

Soil Moisture

Cover Materials

Sensors/Systems Differences

Orbital Altitude

Platform Altitude

Differential System Deterioration Rates

Sensor Calibration

Processinq Differences

Formatting

Resampling Procedures

Decompression Procedures

Astrophysical Differences

Solar Flux

Magnetospheric Interference
Various Axial Motion Components

Ecliptic Variations

Eccentricities in Orbit
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Much of A.I. in remote sensing work is directed toward
the computer-assisted analysis of high resolution
panchromatic imagery and is being conducted under the
Defense Advanced Research Project Agency's (DARPA) Image
Understanding Program. The Japanese are also actively

pursing the development of A.I.-based systems, an excellent

example is presented in Nagao and Matsuyama's book A

Structural Analysis of Complex Aerial Photography (1983).

An overview of the status and potential of A.I. driven

"expert systems" in image data analysis is given by

Mooneyhan (1983). "Expert system" programs use information

contained in a knowledge-base and inference procedures or

production rules to solve problems. None of the systems

reviewed by Mooneyhan (1983) was designed to handle

multichannel, multispectral digital image data.

Goldberg et al., (1983) describe the design of a

Forestry Expert System and tests in a I00 sq. km. area in

Canada indicate that the system can tract both highly

discernable (logging, forest fires) and very subtle forest

changes (regeneration, defoliation due to insects).

Ferrante et al. (1984) have begun to develop and test an

expert system for multispectral image interpretation. The

initial version of their Multi-Spectral Image Analysis

System (MSIAS) is being designed for surface material

classification using hierarchical, tree-structure classifier

where the root node is the whole image. This approach is

similar to employing layered classification logic (Jensen,
1978).

The NASA/Ames Research Center has designed a prototype

expert system capable of producing a preliminary land cover

classification from an unsupervised classification of

Landsat MSS data and associated ancillary data (Erickson and

Likens, 1984). This system uses contingency analysis to

provide a measure of the correlations between spectral

classes and attributes such as elevation, slope, zoning,

soils, and prior land use. Their approach to data relies

principally on the spectral domain of the image data and

does not utilize the textural or contextual features of an
image.

Researchers have begun to merge remote sensing dataand

ancillary data within the context of a geographic

information system (Maw and Grass, 1981). More layers of

derivative information such as band transforms, texture and

contextual information bands are being incorporated for

classification purposes (Strahler et al. 1984, Peterson et

al., 1983, Likens et al., 1982, Likens and Maw, 1982).
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The use of data from higher-resolution sensors should
improve the performance of the above classifiers.
Significant improvements using thematic mapper simulator
data have already been reported (Gervin et al., 1982).
However, new approaches and techniques must be developed
before substantial increases in classification performance
can be made.

The current interface between GIS and remote sensing
systems is functional, but weak (Smith and Blackwell, 1980,
Hutchinson, 1982, Junkin, 1982, Jensen, 1984). Jensen
(1984) states that "An oversight of individuals attempting
to promote remote sensing and to GIS coordination results
from assuming that the flow of data should be unidirectional
-- from the remote sensing system to the GIS. The reverse
flow, from the GIS to the remote sensing system, is
desirable, but only infrequently used."

Our research investigated the application of this
reverse flow to image analysis for the identification of new
oil/gas pads in previously forested lands.
Approach/Methodoloqv

The previous section documented the development of

image classification techniques and change detection

procedures leading to the current state-of-the-art A.I.-

based systems under development. The initial A.I. systems

for image analysis attempt to comprehensively classify the

entire image into meaningful categories through the

application of knowledge-based rules. Most of the systems

handle only high resolution panchromatic imagery although

the newer systems are starting to be designed around multi-

spectral scanner data. The A.I. systems reviewed also

predominately utilized only the spectral information

contained in the image data.

Our research project was built upon the framework of

the blackboard image understanding system of Nagao and

Matsuyama (1983) using map-guided feature extraction

procedures (McKeown and Denlinger, 1984) and map category-

specific interpretation rules based on spectral, spatial,

textural, and contextual properties of an image and

collateral GIS knowledge layers. Like a good human image

interpreter, automated A.I. interpreters should utilize a

convergence of evidence process through analysis of the

elements of image interpretation (tone, texture, size,

shape, context, association). The success of knowledge

based expert systems is closely linked with how well its

production rules model reality and the depth of its

knowledge base. Implementing a comprehensive A.I. system

for monitoring all types of land surface change is a long,

involved, and complex endeavor. We approached the problem
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from a more selective, prioritized perspective, however, the
ultimate goal is a comprehensive system for updating all
inventory categories.

A.I. procedures to detect changes and identify "from-
to" classes were developed and performed on a category-by-
category basis. Image and data base operations were
optimized for "likely" types of change within a known map
stratum. A priori knowledge of the previous land cover or

use classification and other information in the GIS data

base was employed in interpretation rules.

This approach makes sense from the standpoint that

successfully mapping different types of land change (e.g.

forest clearcuts vs. residential development) may require

using different interpretation techniques on substantially
different sensor data acquired under different conditions.

Also, certain types of change are more widespread, dynamic,

and have a higher priority than other types, thus the

frequency of update and the resources to accomplish the task

may vary.

The basic components and overall conceptual structure

of the land cover/use change interpretation system is

presented in Figure i.

The first phase of the process involves pre-processing

both map and image data to construct corresponding raster-

based, multi-dimensional image layers. The layers of map

information in the Michigan GIS are converted to Landsat TM

resolution (30-meter) raster files. The remotely sensed

multispectral data of a TM scene are first processed to

generate any necessary derivative image planes such as

vegetative indices, texture, or principal component images.

The images are rectified to register with the raster layers

of map information. Corresponding image and GIS map data

bases are then extracted for specified areas (e.g.

townships) and global parameter tables constructed for each

layer in the data bases.

The interpretation process is primarily guided by an

priori knowledge of scene content (previously classification

and other geographically-based collateral information). By

using the map data base and image operators, the feature

processor can segment areas and characterize regions.

The image analyzer contains a suite of operators which

perform functions needed for feature extraction and region

characterization. These image analysis procedures and

operators have been reviewed by Rosenfeld (1977, 1984),

Claire (1984), and others. More detailed information can

found on:
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Image segmentation

region growing
edge detection

thresholding
shape descriptors
texture analysis

object matching

(Riseman and Arbib, 1977, Ohlander et
al., 1978, Schachter et al., 1979, Fu
and Mui, 1981, Campbell et al., 1981,

Goshtasby, 1984)

(Zucker, 1976),

(Davis, 1975, Peli and Malah, 1982, Hord

and Gramenopoulos, 1975)

(Weszka, 1978)

(Pavlidis, 1978, 1980)

(Haralick, 1979, Logan, et al., 1979,

Iisaka, 1979, Nasrabadi and King, 1984,

Dutra and Mascarenhas, 1984)

(Zahn, 1974, Price and Reddy, 1979)

Statistical properties of the image data corresponding

to map units of the same type are calculated and entered

into the property tables for that map stratum such as image

properties of previously mapped, high density jack pine pole

timber stands. Property tables are constructed for both

"from" and "likely change-to" map categories and are put

into the map strata data base.

A set of change detection threshold levels for the

statistical measure are determined either experimentally or

adaptively by the program. The threshold values are used

to: i) determine "classic" (most representative) image

parameters for each map stratum in the map strata data base,

2) identify deviant "likely changed" entire map units, and

3) segment image areas within map units that are not

representative of the classic signatures for that map

stratum.

Statistical properties are then calculated for each

possible change area and put into the change feature data

base. A set of feature characteristics are determined, for

each area using the derived statistical values and feature

associated data contained in the GIS map data base.

Category-specific, knowledge-based recognition

procedures and rules were developed to detect land cover/use

change within a selected map stratum and subsequently

classify all change areas as to new land cover or land use.

The change-detection interpreter and feature-recognition

classifiers employ rules about the feature characteristics

noted in the change-feature data base to set recognition

status fields.

Image characteristics corresponding to areas currently

mapped as the candidate new label category (e.g. oil/gas

well) are used in the decision process as is collateral

information from the map data base such as adjacency to

roads or other a priori knowledge. For example,
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incorporating rules based upon oil and gas regulations (Sapp
and Richter, 1975) such as the minimum spacing of wells and
the area around a drilling operation shall be cleared of
brush, slash, weeds, and other flammable material for a
radius of 75 feet or larger (Michigan's Oil and Gas
Regulation, 1983).

The unique features of this method over those
previously reported are:

I. The map data base is an independent, operational,

multi-layered statewide land resource information

system•

• Development of cateqory-specific change

interpretation rules and procedures within a

context dependent modeling structure.

• Focus on land surface change detection and

inventory update•

4. Image partitioning by map class stratum

• Emphasis on feature extraction through sequencing

image analysis operations as opposed to pixel

operators working on an entire image•

. Determination of rule parameters values (e.g.

threshold levels, texture, size, and shape

measures) through feature characterization of

image data for known sites currently in the map
data base.

7. Incorporation of object matching techniques.

• Exploration of automated inventory update

procedures.

The western portion of Crawford County was the primary

study area, with Grand Traverse County serving as an

evaluation region• Over 80% of Crawford County is forested

with jack pine, red oak, and aspen/birch the predominant

species• Stands of red pine, sugar maple, and lowland

conifers are also present• Most of the stands are well-

stocked pole timber yet over 20% fall in the seedling-

sapling class. Logging activities routinely occur in the

area and oil/gas exploration has taken place primarily in

the N.W. and S.W. corners of the county•

Digital data, including 1978 photo-derived land cover

use information, already existed for these counties in the

Michigan Resource Information System (MIRIS). Over 20
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levels of information are in the MIRIS data base for
Crawford County (Table 2). About 60 categories of land

cover/use are recognized in MIRIS (Table 3) and more
detailed forest data have been collected in many northern

counties (including Crawford). Computer programs to
transfer and convert MIRIS data to CRS image processing

systems were developed.

The methodology outline above was tested in two

application areas: i) the identification of new oil gas

wells and 2) automatic detection of roads in Landsat 4 TM

images.

In the first investigation, Landsat TM data were merged

with land cover and planimetric data layers contained in the

State of Michigan's geographic information system (GIS) in

order to identify changes in forestlands, principally new

oil/gas wells. A GIS-guided, feature-based classification

method was developed which involves: 2) partitioning a TM

image into forestlands and non-forestlands based on GIS map

units, 2) identifying "pad-like" seed points in forestlands

through image segmentation, 3) defining regions using an

edge detection/region growing algorithm at each seed point,

and 4) applying spatial decision rules to identify new pads.

The method iteratively selects a different image band or

derivative image, seed point determination operator, and

region detection algorithm. The regions extracted by the

best image band/operator combination are evaluated by a set

of rules based on the characteristics of the GIS oil/gas

pads. Using the spectral and spatial characteristics of 22

known pads and the best image (TM-2), the algorithm
identified 5 of 6 new active wells and decision rules

effectively deleted non-pad regions. More detailed

information on this study is provided in "Land Cover Change

Detection using a GIS-Guided, Feature-Based Classification

of Landsat Thematic Mapper Data" (Enslin, Ton, and Jain,

1987). See Appendix for a copy of this paper.

A conceptually parallel road detection method was

developed in the second project. The goal was to detect

roads at three different levels: major roads, local roads,

and minor roads. This road network information is useful

for the evaluation of detected potential oil/gas pads, since

these pads seldom occur on major roads but are often located

at the end of minor access roads.

The method is composed of two phases: low-level road

detection and high-level road labeling. In the low-level

phase a road sharpening operator calculates a magnitude and

direction value for each pixel. A parallel road following

algorithm is then implemented at selected seed pixels. In

the high-level phase, more global information, such as road
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Table 2.

Level

•

4.

5.

6.

7.

9.

ii.

13.

15.

16.

25.

26.

30.

31.

34.

35.

36.

44.

53.

63.

MIRIS Information Layers for Crawford County,

Michigan

Description

Major Transportation

Streets and Roads

Land Cover�Use (includes detailed forest data)

Lakes and Islands

Rivers and Streams

Property Boundaries

Township Boundaries

Federal and State Project Boundaries

Electric/Gas/Oil Lines

Oil/Gas/Brine Wells

Section Corners

Areas of Particular Concern

State Administered Lands

Historic/Archaeologic Sites

State Administered Lands - Fisheries

State Administered Lands - Parks

Locally Administered Lands

Land Enrolled in TA94

Kirkland Warbler

Section Lines
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Table 3. Land Cover/Use Categories Contained in the MIRIS

Data

1 Urban and Built up Lands

ii Residential

iii Multi-family Residential - Medium to High Rise

112 Multi-family Residential - Low Rise

113 Single Family/Duplexes

115 Mobile Home Park

12 Commercial, Services, and Institutional

121 Primary/Central Business District (CBD)

122 Shopping Center/Mall

124 Secondary/Neighborhood Business District

126 Institutional

13 Industrial

138 Industrial Parks

14 Transportation, Communication, and Utilities

141 Air Transportation

143 Water Transportation

145 Communications

146 Utilities

17 Extractive

171 Extractive - Open Pit

172 Extractive - Underground

173 Wells

1731 Oil Wells

1732 Gas Wells

19 Open and Other

191 Outdoor Cultural

192 Outdoor Public Assembly

193 Outdoor Recreation

194 Cemeteries

2 Agricultural Lands

21 Cropland

211 Cultivated Crop

212 Hay, Rotation, and Permanent Pasture

22 Orchards, Bush Fruits, Vineyards, and Ornamental

Horticultural Areas

221 Tree Fruits

222 Bush Fruits and Vineyards

23 Confined Feeding Operations

24 Permanent Pasture

29 Other Agricultural Lands

3 Non-forested Lands

31 Herbaceous Openland

32 Shrubland

33 Pine or Oak Opening (Savannah)
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Table 4. (continued)

4

5

6

Forest Land
411/412 Upland-Mixed Hardwoods
413
414
421
422
423
429

Aspen-Birch
Lowland Hardwoods
Pine
Other Upland Conifers

Lowland Conifers

Managed Christmas Tree Plantations

Water Bodies

51 Streams and Waterways
52 Lakes

53 Reservoirs

54 Great Lakes

Wetlands

61 Forested (wooded) Wetlands

611 Wooded Wetlands

612 Shrub/Scrub Wetland

62 Non-Forested Wetlands

621 Aquatic Bed Wetland

622 Emergent Wetland

623 Wetland Flats

7 Barren Land
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length, local intensity and contrast (strength), and
curvature, are used to classify roads into different levels.
Knowledge-based rules are used to properly label
disconnected roads, e.g., segments of highways that are
disconnected by small urban areas can be labeled as the same
road. Experimental results from several images show that
the proposed method can detect roads reasonably well in the
low-level phase and is useful in pad evaluation. In the
high-level phase only major roads are labeled in our current
method. Future research includes combining multi-band
information in road detection and determining thresholds in
a more systematic way.

An article which more fully describes this study can be
found in the Appendix (see "Automatic Road Detection on
Landsat 4 TM Images," Ton et al., 1987).
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ANALYSIS OF RADIANT TEMPERATURE DATA FROM THE GEOSTATIONARY

OPERATIONAL ENVIRONMENTAL SATELLITES

David P. Lusch

Center for Remote Sensing, MSU

Department of Geography, MSU

This document details the various specifications and

methods used to develop the land-cover and forest cover type

data layers in the Michigan Geographic Information System.

This digital environmental data base was compiled in order

to evaluate the potential role the landscape plays in

determining the thermal patterns of Michigan.

Landsat Imaqe Interpretation

The scale of the analog compilation maps is 1:250,000.

A minimum mapping size of 16 square millimeters was used for

all categories of land cover. This mapping size, therefore,

corresponds to the one square-kilometer grid-cell size of

the final computerized data base.

Nine categories of land cover were mapped -- five at

level one, and four at level two. These categories are:

1

2

3

41

42

5

61

62

7

Urban and Built-up

Agricultural Land

Rangeland

Broadleaf Forest

Needleleaf Forest

Water

Forested Wetlands

Non-Forested Wetlands

Barren

The land cover manuscript maps were stable-base

overlays to the twenty-three 1:250,000 USGS quadrangles that

cover the state of Michigan. Landsat imagery, both MSS and

TM, was the primary data source for the land cover layer

(see Attachment i). Visual interpretation procedures were

employed, but the Landsat false-color composites that we

used were custom products produced in-house. These

composites were band-independently contrast-stretched by

contact printing the original black-and-white positive

transparencies (i:i million scale) to stable-base diazo

color film in an Iconics Ultraviolet Exposure Frame (model

BVL 1617). The exposures were precisely controlled by using

a Carlson LI-46D Time-Light Integrator which was installed

into the Iconics unit. The sensor diode of the integrator

was filter to accept only the ultraviolet output of the

exposure unit since this is the actinic radiation for diazo

film.
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An ESECO Speedmaster Color Transmission Densitometer,
Model T-85 CD, was used to make optical density measurements
on the Landsat transparencies in order to choose the optimum
exposure for each band of each scene. The diazo film used
was James River Graphics Teknafax, 3 mil polyester, 8.5xli
inches. This film type is developed dry using a Micobra
Diazo Film Developer, Model D-II.

These custom diazo-enhanced composites were rear-
projected onto stable-base copies of the USGS 1:250,000
quadrangles using a Krones LZK 100S Transyscop. MSS images
were projected at 4X magnification ,whereas TM images were
projected at either 3X or 4X depending on the date of the
image (some of the early TM images processed by the Scrounge
System at NASA Goddard and labled "Engineering Test Data"
were produced at a scale of 1:750,000).

Although the Landsat imagery was the primary data
source for the land cover information, other ancillary
sources were utilized as needed. These included a variety
of USGS quadrangle maps at scales of 1:250,000, 1:62,500 and
1:24,000; B/W panchromatic aerial photography at 1:20,000
and 1:40,000; color infrared aerial photographs at 1:24,000
(MDNR statewide coverage); NASA high-altitude color infrared
images at scales of 1:60,000 and 1:120,000; and various
county soil survey reports.

The Forested Wetland category was the most difficult
one to map. These areas frequently had the same tonal
signature as other forested lands, notably coniferous
stands. It was not possible to produce an acceptable diazo
enhancement that highlighted the forested wetland features.
Multi-temporal Landsat image analysis did help to determine
the wetland areas, but the MDNRCIR airphotos had to be

relied upon in the most difficult locations. As a first

approximation, however, the USGS 7.5-minute quadrangles can

be used to show forested wetland areas (swamp symbol in the

green, forest overprint).

The broadleaf v_ss needleleaf forest distinction was

difficult in the northern three quads (Traverse City,

Cheboygan, and Alpena) because of the large amount of mixed

forest in this area. Mixed forest was not one of the

mapping categories. Although fall and winter scenes were

used in the interpretation process, the winter scenes were

not relied upon to classify the coniferous forests. Rather,

the polygons were delineated on summer (i.e. leaf-on) and

fall (leaf-off, no snow) images. Of course, the aerial

photography was used to properly interpret the difficult

areas.
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The interpretation of urban and builtup land can also
be a difficult task, especially when new, residential
neighborhoods without large trees form the urban fringe. A
diazo enhancement procedure was developed which highlighted
the urban features. For this mapping task it was important
that the most recent Landsat scene be used.

Coordinate System

The land cover layer was the second statewide data set

to be entered into the computer. For a previous project,

the Soil Associations of Michigan map had been digitized and

was available. As such, the land cover data was considered

to be an "overlay" onto the existing soils data.

Unfortunately, the geographic graticule on the soils map

proved to be inaccurately drawn and so was useless in terms

of referencing the USGS 1:250,000 quad-based land cover

data. The GIS data entry system we had available (ERDAS

400) did not support the use of latitude/longitude. Because

of this limitation, an "arbitrary" transverse Mercator (ATM)

grid had been constructed for the soils map. This grid was

composed of orthogonal rows and columns of one-kilometer-

square cells. When it was discovered that the geographic

gradicule on the soil map was in error, this forced us to

redo the construction of the ATM.

Since the soils data were already in the computer in

the ATM format, it was decided to redraw a more accurate

geographic gradicule onto an overlay to the soil map. This
would allow us to reference our ATM coordinates to

geographic coordinates. The "standard" parallel was chosen

to be 44 degrees, the "standard" meridian was chosen to be

86 degrees. From these two "standard" lines (which by

definition meet at right angles), a new, orthogonal,

geographic grid was laid off using the standard distances

between degrees of latitude and longitude (Gosset, 1971).

The ATM coordinates established for the graticule

intersections using this method are listed in Attachment 2.

The geometric accuracy of this "arbitrary" grid is shown by

the error matrix presented as Attachment 4. The stable-base

1:250,000 USGS quads were checked for geometric accuracy as

well. The residual errors were acceptably small for our

purposes -- usually less that one-third of a grid cell, i.e.

333 meters.

In order to facilitate setting up any map on the

digitizer for entry into the ATM coordinate system, a

program was written which computes the ATM coordinate for

any latitude/longitude. The source code and the appropriate

responses to the program's prompts are presented in

Attachment 3.
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Data Entry

In order to simplify data entry and subsequent GIS

manipulation, the land cover category codes, originally

taken from the Michigan Land Cover/Use Classification

System, were recoded. The class designations were changed
as follows:

Class on

Land Cover Maps Feature

Class on

Final GIS File

1 Urban 1

2 Agriculture 2

3 Rangeland 3

41 Broadleaf Forest 4

42 Needleleaf Forest 5

5 Water 6

61 Forested Wetland 7

62 Non-Forested Wetland 8

7 Barren 9

The 23 land cover overlays to the 1:250,000 quadrangles

were digitized using a Calcomp 9000 electronic digitizing

tablet connected to both the ERDAS 400 system and to a

standard IBM PC-XT microcomputer. The land cover map units

were captured as polygons by this digitizing process. The

land cover category codes and the polygon vertices were

stored as disk files. Subsequently, these digital polygon

files were rasterized at 333.333 meters using the polygon-

to-grid conversion software in the ERDAS system.

Due to an error, three of the land cover quadrangle

overlays were digitized using incorrect coordinates for

their setup. Rather than re-digitize them, it was more

efficient to simply transform the incorrectly georeferenced

land cover data into the correct grid. A small program was

written to accomplish this transformation (see Attachment

5). The three maps which were digitized incorrectly were

the Ashland, Marquette, and Escanaba quadrangles.
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The one-third kilometer raster file was not intended as
the final product-- the final file structure has one-square-
kilometer grid cells. The small-area polygons were badly
undersampled when we initially tried to rasterize the
polygon file at the final resolution of i000 x i000 meters.
The "high resolution" 333.333 x 333.333 meter rasterization
provided a means of controlling the spatial aggregation
process inherent in the polygon-to-raster conversion.

A computer program was written that allows the user to
specify a new grid cell size and then will aggregate higher-
resolution data into larger cells based on category
dominance and a user-specified priority table. In this

program, an N by N window is passed through the GIS file.

At each pixel location (x,y,), a frequency count is made of

the class values in the window. The most frequently

occurring value is assigned as the output pixel value. Ties

are broken using a lookup table of class priorities which

the user provides. A listing of this program is given in

Attachment 6.

File Structure

The ,,high-resolution" raster file for the state was

created in two parts. All data for the Lower Peninsula are

in one file; the data for the Upper Peninsula are in a

second file. These files have a ".GIS" extension for

designation within the ERDAS 400 system. File parameter

descriptions include:

Lower Pen. Upper Pen.

Columns

Rows

Start X

Start Y

Coordinate System

X, Upper Left Map Coordinate

Y, Upper Left Map Coordinate

X Cell Size (meters)

Y Cell Size (meters)

Classes

1092 • 1734

1410 1083

1 1

1 1

ATM ATM

290,000 18,068

558,000 820,628

333.333 333.333

333.333 333.333

i0 i0

The one kilometer file contains aggregated versions of

both the high-resolution Lower and Upper Peninsula data

sets. This file also has the ".GIS" extension. Parameter

descriptions for this file are:

Columns 633

Rows 733

Start X 1

Start Y 1
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Coordinate System

X, Upper Left Map Coordinate

Y, Upper Left Map Coordinate

X Cell Size (meters)

Y Cell Size (meters)
Classes

ATM

18,068

820,628

i000

i000

I0

More expansive file information is contained in Attachment
7.

Numerous islands in the Great Lakes are large enough to

"show" in the one-square-kilometer data base. A complete
list of these islands is presented in Attachment 8.

Major Forest Cover Types

A recent map showing the major forest cover types in

Michigan (Spencer, 1983) was digitized using the same ATM

coordinate system and procedures as the Land Cover file.

This map, while showing much more species detail than the

land cover file, has very poor spatial precision. The land

cover file, on the other hand, has very good spatial

precision, but much less detail in terms of the number of

species classes it presents. By digitizing this existing

map and using the power of the GIS software in the ERDAS 400

system, we created a new, unique map which displayed the
best of both of its parents.

The eight map classes on the Forest Type map are:

1

2

3

4

5

6

7

8

Maple-Birch Association

Aspen-Birch Association

White-Red-Jack Pine

Elm-Ash-Cottonwood Association

Spruce-Fir Association

Oak-Hickory Association

Unproductive Forest

Non-Forest Land

The digitized forest type map was rasterized using

procedures similar to those employed for the land cover file

-- a "high-resolution" file was created and aggregated. The

Forest Type GIS file was registered to the Land Cover file

using the Overlay and Matrix software routines in the ERDAS
system.

The Land Cover and Forest Type files were combined

using the Matrix program. Only the union of classes 4,5,

and 7 in the land cover file (i.e. broadleaf forest,

needleleaf forest, and forested wetland) with classes 1-8 in

the forest type file were considered. For any unacceptable

co-occurrance (e.g. broadleaf forest on the Land Cover file
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and White-Red-Jack Pine on _ c: ?grest Type file), black and

white line printer maps we:_: _ :_i. :_d with county boundaries
overlayed for reference•

These printer maps we:e - :.... _ _cked against the

Landsat imagery originally _ : _ _ coduce the Land Cover

data. Positional referencin i _ _he Landsat scene was

accomplished using the cou_xv L:: _ _-ies on the stable-base

1:250,000 quads which were f! :: _ : _ the projected Landsat

image• Analysis was conduc_:_;_ :" _/ _'_ areas of four or more

contiguous pixels of "erroc _'- _ land cover file was

found to be in error, it w, ; / _:[vely updated using the

ERDAS software. Only 339 Fi _ : n the original Land Cover

data file needed to be cha_ ;:: _ z esult of this two-map

merger. This represents lez_; ::: c _e percent of the total

matrix size. A listing of t_ : : _ _ which were changed is
given in Attachment 9.

The major products of _:- --
_ _e_rch are the digital GIS

files which have become the _ .::: _i_:n of the Michigan

Geographic Information Syste ;h[_ unique resource

information data base is fu!_:_!bed in the Appendix

entitled Michigan Geographic _ _cmation System•

Refer__ences

Gosset, F.R. 1971 Manual- .........Lc Triangulation• U S
Dept. Commerce, Coast _ __ c;_s<ie£ic Survey, Special Pub.

247• Wash., D.C. :Govern i_ fLo_nting Office, pp. 309-
310.

Spencer, J.S 1983 Michigan's _ _- '• - _,n,tn Forest Inventory:
Area• USDA, Forest Se_;_._, _orth Central Resource
Bulletin NC-68.
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DEVELOPMENTOF METHODOLOGIESTO ASSESS POSSIBLE IMPACTS OF
MAN'S LAND SURFACECHANGESON METEOROLOGICALPARAMETERS

Jon Bartholic
Chansheng He

Kyle Kittleson
Center for Remote Sensing

Backqround

The fifth project proposed for support from this

portion of the NASA contract was originally entitled,

,,Determination of Dessertification Patterns for a Test Area

in Southern Kenya." Because of the unavailability of the

principal investigator who was going to use remote sensing

techniques in his work in Kenya, we spent our efforts

exclusively in the development of methodologies. The

particular test site used, because of ease of access and

verification, was Michigan's Lower Peninsula. Former work

has shown that man's activities in modifying surface

conditions can significantly impact surface temperature,

reflectance, roughness and, subsequently, heat and vapor

fluxes. Satellite data and ground weather stations can be

used in energy balance equations to evaluate the impacts of

such activities. Thus, preliminary work on the development

of methodologies and tests of concepts was undertaken. This

was done in cooperation with contract number

923-677-21-24-07 from NASA Goddard.

Problem Statement

The fluxes of heat, vapor, and momentum from the oceans

and land surface are driving forces affecting weather

patterns. Fluxes from the ocean have been studied

relatively extensively considering the spatial uniformity of

the oceans. Land surfaces, which are much more complex,

have been studied to a much lesser degree. The physical

processes occurring at the land surface are relatively

poorly understood, quantitatively.

Man has modified major portions of the earth through

deforestation, alteration of climax vegetation, and

intensive agriculture. ,The possibility for inadvertent

modification of weather patterns from these activities, with

subsequent impacts on climate, exists. It is imperative

that techniques be developed to better understand these

impacts to prevent man from inadvertently modifying weather

patterns negatively.

Data on surface parameters over relatively large areas

can be obtained only from satellites. Yet, the physical
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interpretation of such information, because of the large
field of view from satellites, is still difficult. Our
ability to interpret values measured from satellites in
relation to physical and biological conditions has
progressed slowly• The goals, however, must be achieved if
we are to have techniques that will help us better
understand man's impact on the earth's surface and to better
incorporate new approaches for quantitizing surface
radiation, energy, and vapor fluxes into large scale
climatological models.

Study Objectives

The specific objectives of the research have been to:

. use HCMM and NOAA satellite data to

characterize the reflected solar radiation for

different surfaces

• evaluate differences in the thermal regimes of

surface types

. develop objective techniques for using

reflectivity and thermal characteristics to

detect major vegetation types and monitor

shifts in vegetation

• characterize and monitor boundary layer models

to characterize vapor and sensible heat fluxes

Research Strateqy

Methodologies that can be considered are energy balance

and mass transfer equations which incorporate surface

parameters. These models are of two types (Choudhury et

al., 1984, Gurney and Camillo, 1984, and Gurney, Blyth and

Camillo, 1984). One incorporates stomata and canopy

resistance and, possibly, soil water stress. This approach

has merit in that it relies on plant conditions. The

models, however, can be relatively complex, and the

difficulty of integrating small scale stomatal resistance

over leaf and, ultimately, canopy dimensions can be a

challenge. Such a cumbersome model would be difficult to

use over major regions of the earth's surface•

An alternate energy-balance mass-transfer model has

been suggested by Fuchs and Tanner. This approach

incorporates key surface parameters that can be obtained

from satellite measurements. This physically sound

mathematical model has been found to reliably predict the

flux of heat and vapor under numerous conditions (Bartholic

et al., 1970, Fuchs and Tanner, 1967, and Greenfield and

5O



Kellogg, 1960). Of major significance in this approach is
the use of surface temperature in the model, a parameter
easily measured directly from satellite data. A study by
Bartholic in southern Florida shows the correlation between
evapotranspiration and surface temperature for a
grass-covered surface. Also, the comparison of the Fuchs
and Tanner method with the Bowen ratio can be made. An
excellent relationship is shown to exist.

A key advantage of this method is that the vapor and
heat fluxes can be calculated on a fine grid of cells over
the entire test site. Also, the model can easily be run on
an hourly basis and integrated over time for ether the three
week concentrated experiments or the longer term growing
season studies. Further, the heat and vapor fluxes
calculated from the model give a relatively clear picture of
how these values change across an area as a function of
surface conditions (soils, plants, and aspect), and as plant
stress increases or plants change in their physiological
stage of development.

Conclusions

Man's modifications of surface conditions have

significantly altered the thermal regime of the earth's

surface causing differences of as much as 8 ° C between

agricultural areas and the originally forested and wetland

areas. The reflectance of energy from the earth's surface

is also modified and generally correlated with particular

vegetation and land use practices. Surface modifications

could change the reflectance over relatively large areas by

as much as 9%. The changes in surface temperature and

reflectance could impact the net radiation significantly and

further cause the changes in evapotranspiration rate. Over

large areas, differences of 9 cal/cm2/hr in net radiation

and 5-8 cal/cm2/hr in evapotranspiration could exist between

the agricultural areas and the forested and wetland areas.

Daily ET differences between the two categories could be as

high as 55/cal/cm 2. Over the entire summer season (June to

September), a reduction of 7 to 12 cm of water would

evaporate from agricultural and urban lands compared to the

natural cover types. These alterations would have

significant impact on the hydrologic cycle and fluxes of the

vapor and heat to the atmosphere.

The heat and vapor fluxes over a relatively large area

can be estimated using a Geographic Information System (GIS)

and Energy-balance approaches which uses extensive satellite

inputs and weather station data. The GIS gives a systematic

spatial perspective to the study area. This is crucial in

helping to integrate the various components and develop an

understanding of the relationships between the basic
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physical and biological processes in relationship to
remotely sensed satellite data. Using the GIS and Energy

Balance approaches, a detailed spatial distribution of

fluxes of the radiation, heat and vapor from any portion of
earth's surface can be derived.

Through monitoring the changes at the earth's boundary

layer, the impacts of man's activities on the earth's

surface condition can be assessed. Consequently, man's

activities which might negatively modify weather patterns

could be prevented.

More detailed information is available in the final

report on contract 923-677-21-24-07 from NASA GSFC.
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ABSTRACT

Forest resource analysts have traditionally relied, almost

exclusively, upon aerial photography and other remotely-

sensed data acquired during the growing season. The ready
availability of leaf-off, high-altitude, color infrared

aerial photography (NHAP), as well as multi-temporal

Landsat data, for most of the country make these two

important additional sources of forest resource informa-

tion. Leaf-off aerial photography is recommended as a

supplement to "traditional," leaf-on photography wherever
deciduous-coniferous mixtures occur. In addition to mid-

growing season (summer) coverage, analysis of fall, winter,

or spring Landsat data should also be considered as a

valuable source of forest resource information.

SEASONAL CONSIDERATIONS

On the basis of varying user needs, aerial photographs may

be divided into two broad groups: that acquired during the

growing season (leaf-on) or during the dormant (leaf-off)

season (Avery and Berlin, 1985). Leaf-off aerial

photography is typically utilized for compiling topographic

maps, identifying landforms, delineating soil boundaries,

and a host of other tasks which require minimum obscuration

of ground features by vegetation. In contrast, foresters,

range managers, and others interested in analyzing the

vegetation typically prefer leaf-on aerial photo-

graphy. There are exceptions to this generalized division,

however. For example, the Coast and Geodetic Survey

routinely acquires leaf-on photography to permit accurate

tree-height determinations in connection with their airport

obstruction charting program (Swanson, 1964; Craunt,

1968). Another exception is photo interpretation of

conifer-dominated woodlands (e.g. the boreal forest).

Inventories of these forest ecosystems are frequently done

with leaf-off photography (Aldred and Kippen, 1967; Aldred

and Lowe, 1978; Nielson et al., 1979).

Whenever airphoto missions are planned, seasonal considera-

tions should form a part of the specifications and

generalized guidelines are available (Avery and Meyers,
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1962; Sayn-Wittgenstein, 1967; Avery, 1970). Regarding
tree species identification, Sayn-Wittgenstein (1961; 1978)
has summarized the major phenological events with respect
to the timing of airphoto acquisitions. Specialized photo-
interpretation tasks, such as forest regeneration
assessments (Kirby, 1980; Goba et al., 1982), should
carefully formulate their temporal specifications (Colwell
and Marcus, 1961).

Standard forestry photointerpretation procedures
(e.g. Zsilinszky, 1966; Hudson, 1984) have stressed the use
of leaf-on photography wherever deciduous trees are an
important component of the vegetative assemblage. Leaf-on

aerial photography is a logical choice whenever differences

among hardwood species are required, although there may be

exceptions (Newman and Shain, 1976).

Many inventories, especially in areas with a heterogeneous

mixture of deciduous and coniferous forest types, may

benefit from the use of multi-seasonal (leaf-on and leaf-

off) photographic coverage (Hill and Evans, 1982). The

recent availability of leaf-off, high-altitude, color

infrared (CIR) aerial photography (National High-Altitude

Photography Program, NHAP) over the entire continental

U.S. may provide this additional source of forest resource

information (Antill, 1982).

LEAF-OFF AERIAL PHOTOGRAPHY

Throughout the northern Lake States, a mosaic of deciduous

forest types alternate with conifer-dominated forests --

the hemlock-white pine-northern hardwood association

(Braun, 1950). Dominance by a single type varies and,

complicated by disturbances, results in an often complex

intermingling of various proportions of deciduous and

coniferous species.

In a forest setting such as this, the unique capabilities

of leaf-off CIR aerial photography provides an invaluable

supplement to leaf-on airphotos. Of particular concern to

the photo interpreter, are those instances where a

deciduous overstory completely obscures the presence of a

coniferous understory. For example, we have encountered

stands which would be classified from leaf-on aerial

photography as completely deciduous (aspen-birch or balsam

poplar). Intrepretation of these areas on NHAP leaf-off

photography, however, revealed a well-stocked understory of

coniferous species (northern white-cedar, white spruce, and

balsam fir). Subsequent field verification of one of these

stands indicated that the coniferous species accounted for

the majority of the basal area (IZZ sq. ft./acre) and



volume, compared to the deciduous overstory (only 2Z
sq. ft./acre).

Although an experienced photo interpreter may have been
able to infer the presence of these coniferous understories
(based on site, overstory composition, and a knowledge of
local environmental and successional relationships), the
leaf-on airphotos provided no information by which to fully
characterize these stands. This last point is particularly
important. Even when the overstory does not completely
obscure the understory, the intrepreter is frequently
unable to accurately measure the understory. Wherever

coniferous and deciduous species intermix, even if one

doesn't "over-top" the other, we have found that the use of

leaf-off photography enables the interpeter to better

quantify the spatial arrangement of the stand. In

instances where the coniferous species (e.g. white or red

pine) are taller than the surrounding hardwood stand, the

spatial extent of the conifers is highlighted on the leaf-

off photography.

Although leaf-on aerial photography will continue as the

"standard" for many forest photointerpetation tasks in

areas where deciduous species are important, resource

managers should not overlook the added information which

may be derived from leaf-off photography. Especially now

with the availability of NHAP leaf-off aerial photography

for the entire U.S., we recommend its use as a supplement

to "traditional" leaf-on photography.

LEAF-OFF LANDSAT DATA

The acquisition of multi-spectral, multi-temporal

(including leaf-off) data from the Landsat series of

satellites has provided a voluminous source of potential

forest resource data. Although seasonal recommendations

vary, to date the majority of forestry applications of

Landsat data have relied on the analysis of scenes acquired

during the growing season (e.g. Mead and Meyer, 1977;

Bryant et al., 198_; Roller and Visser, 1980). Several

Landsat applications conducted at the Center for Remote

Sensing, Michigan State University will be used to

illustrate the utility of leaf-off satellite data to
provide forest resource information.

An evaluation of the accuracy of mapping small forestlands

in southwestern Michigan from Landsat MSS imagery compared

two acquisition dates and two image products (Karteris et

al., 1981). For a winter (February), snow-covered scene, a

black and white, positive transparency of band 5 was

compared with a standard false-color composite produced by

the EROS Data Center (EDC). For a second scene, acauired



in the fall (September), a standard EDC false-color
composite and a custom-made, diazo-enhanced color composite

were compared. The diazo color composite was contrast-

stretched to enhance the forested areas using the

densitometric procedure outlined by Lusch (1981).

Separate forest/non-forest maps were compiled by visually

interpreting each of the four Landsat images. Forest areas

as small as one hectare (2.5 acres) were delineated. The

overall mapping accuracies ranged from 74.Z to 98.5 percent

and were higher for the winter scene than for the fall

scene; the highest accuracy was achieved with the winter

false-color composite. The diazo enhancement of the fall

scene improved the mapping accuracy over the standard

false-color composite. A spatial analysis of the error

units showed that most of them were less than 4 hectares

(iZ acres) in size and that over 83 percent of all

commission and omission errors were along forest/non-forest

boundaries.

Franklin, et al. (1983) evaluated the utility of computer-

enhanced Landsat imagery for mapping coniferous forest

types in the northern Lower Peninsula of Michigan. They

visually interpreted a false-color composite of a spring

(April) scene which had undergone radiometric restoration,

contrast enhancement, edge enhancement, and synthetic line

generation. Prior to the actual image interpretation, the

analysts were given intensive training which included the

development of photo keys illustrating the appearance of

the different coniferous forest types on Landsat false-

color composites. Additionally, the interpreters system-

atically compared several examples of each forest type On

high-altitude color infrared photography with their

appearance on the Landsat color composite; forest inventory

measurements (species, stocking, diameter, and height) for

each of these training stands were available.

The visual interpretation procedures were tested over two

sites to determine the feasibility of identifying four

coniferous cover types (red pine, jack pine, pine mixtures,

and swamp conifers). The mapping accuracies achieved for

each test site are summarized in Tables 1 and 2. Overall

classification accuracies were 84.8 and 72.7 percent,

whereas the accuracies of interpreting the individual cover

types ranged from a low of 32.2 percent for mixed pine

stands to a high of 95.1 percent for jack pine plan-

tations. Most of the mapping errors involved a confusion

among the individual pine species (red pine, jack pine, and

pine mixtures). Accuracies of the combined pine classes,

were 93 and 77 percent. The swamp conifer type had

consistently low interpretation accuracies in both test

areas. As a single broad category, coniferous woodland was



interpreted with an accuracy of 9Z and 81 percent for the
two sites.

Additional research has been aimed at developing automated
techniques (i.e. computer classification of Landsat MSS
digital data) for the identification and characterization
of coniferous forest types in the northern part of
Michigan's Lower Peninsula. Landsat-3 MSS data, acquired
on February 26, 1979 (E-3Z358-15471), were used in an
analysis of the same test sites referenced above. At this
date, there was an average of 58.4 cm of snow on the ground
as reported by the 17 weather stations in the area. Almost
all of this snowfall occurred prior to several days before
the Landsat overpass. As a result, virtually all non-

forest cover types, including inland lakes, exhibited the

spectral response of snow. Although the hardwood forests

were leafless, their extensive mass of trunks and branches

substantially altered the reflectance of the underlying

snowpack. The coniferous forests, mostly red pine, jack

pine, pine mixtures, and swamp conifers (primarly northern

white-cedar), provided the only green-foliage reflectance

in the entire scene.

A variety of "standard" classifiers (e.g. unsupervised

clustering, minimum distance to the mean, and maximum

likelihood) were evaluated in terms of their accuracy for

disciminating among coniferous forest types (Table 3).

Subsequent analysis of the digital brightness values led to

the development of spectral response curve models (Hudson

and Lusch, 1984). These models predict the multi-band

brightness values corresponding to mixtures of various

cover types on the basis of their spatial extent in the

instantaneous field of view of the MSS instrument.

The Wexford and Crawford county test sites were classified

using a two-band linear combination (BV6-BV5, BY6) with

class thresholds determined by the response curve models.

The resulting accuracies (Tables 4 and 5) exceeded those

obtained by any of the "standard" classifiers, but, except

for an improved discrimination of pine mixtures, were less

than those achieved by visual interpretation procedures.

Current research is attempting to quantify the ability of

the spectral response curve models to provide a measure of

stocking levels within the coniferous forest types.

The results from these three projects clearly indicate

that, in addition to the more traditional mid-growing

season (summer) coverage, Landsat data acquired during the

fall, winter, or spring (i.e. leaf-off) can provide

valuable forest resource information. Managers of any

ecosystem in which conifers are an important component



should not overlook the utility of these leaf-off, remotely

sensed data.
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Table i. Landsat Classification Performance, Visual

Interpretation Data, Wexford County Test Site

Number of Sample Points Classified as

Known

Cover Red Jack Pine Swamp Non- Percent 1

Type Pine Pine Mixtures Conifers conifer Total Correct

Red Pine 774 8 130 26 IZ3 IZ41 74.4

Jack Pine 31 391 17 IZ 48 497 78.7

Pine Mixtures 71 2 87 9 13 187 46.5

Swamp Conifers 16 2 Z 143 36 197 72.6

Non-conifer 57 3 36 89 259Z 2775 93.3

Total 949 411 270 277 2790 4697

Percent 2

Correct 81.6 95.1 32.2 51.6 92.8 84.8 3



Table 2. Landsat ClassificatiQn Performance, Visual Interpretation

Data, Crawford County Test Site

Number of Sample Points Classified as

Known
Cover Red Jack Pine Swamp Non- Percent 1

Type Pine Pine Mixtures Conifers conifer Total Correct

Red Pine 23 38 Z 1 16 78 29.5

Jack Pine 9 15ZZ 18 18 33 1578 95.1

Pine Mixtures 0 23 33 ii IZ 77 42.9

Swamp Conifers Z 125 1 39__88 19 543 73.3

Non-conifer 2 301 1 222 307 833 36.9

Total 34 1987 53 65Z 385 3109

ram.

Percent 2

Correct 67.6 75.5 62.3 61.2 79.9 72.73

I
considering only omission errors

2considering only commission errors

3overall classification accuracy; ratio of the sum of diagonal values

to the total number of points



Table 3. Landsat Classification Performance Using
"Standard" Classifiers

Default Cluster

Cluster with

smaller radius

Level-Sliced

default clusters

Level Sliced

cluster with

smaller radius

Minimum distance

Maximum

Likelihood

Overall Classification Accuracy (%)

Wexford

County

77.6

78.8

79.3

79.4

Crawfo rd

County

64.8

64.6

64.2

64.8

65.2

65.1



Table 4. Landsat Classification Performance, (BV6-BV5, BV6) data,

Wexford County Test Site

Number of Pixels Classified as --

Known

Cover Red Jack Pine Swamp Non- Percent 1

Type Pine Pine Mixtures Conifers Conifer Total Correct

Red Pine 4497 177 35 -- 665 5367 83.8

Jack Pine 358 733 37 -- 552 168Z 43.6

Pine Mixtures 811 199 56 -- 145 1211 4.6

Swamp Conifers 13Z 133 7 -- 68 338 Z.Z

Non-conifer 757 4Z5 5 -- 13292 14459 91.9

Total 6553 1647 133 -- 14722 23Z55

Percent 2

Correct 68.6 44.5 42.1 Z.Z 9Z.3 80.6 3



Table 5. Landsat Classification Performance, (BV6-BV5, BV6) data,

Crawford County Test Site

Number of Pixels Classified as --

Known

Cover Red Jack Pine Swamp Non- Percent 1

Type Pine Pine Mixtures Conifers Conifer Total Correct

Red Pine IZ 259 1 29 36 335 3.Z

Jack Pine 5 4795 Z 2ZZ 969 5965 8Z.3

Pine Mixtures 3 545 2 34 146 730 Z.3

Swamp Conifers 2 769 Z 58___5 6Z 1416 4.3

Non-conifer 2 1892 3 36 4229 6159 68.7

Total 22 8257 3 884 544Z 146Z5

Percent 2

Correct 45.4 58.Z 66.7 66.2 77.7 85.8 3

Iconsidering only omission errors

2considering only commission errors

3overall classification accuracy; ratio of the sum of diagonal values

to the total number of points



MICHIGAN GEOGRAPHICINFORMATION SYSTEM
Center for Remote Sensing

Michigan State University

The Michigan Geographic Information System is a

microcomputer-based, statewide, georeferenced information

management system. The raster file structure uses 1 square-

kilometer grid cells and contains 633 columns and 733 rows.

The system is currently resident on an IBM Personal Computer

AT and utilizes ERDAS (Earth Resources Data Analysis Systems)

software.

All files are 8-bit, consist of a prefix (MI, LP, or UP, a

file name, and a GIS extension. The prefix MI is utilized for

statewide files (733 rows by 633 columns) which contain data for

all 83 Michigan counties and associated Islands. The prefix UP

is used for subset files containing upper peninsula counties only

(361 rows by 578 columns) while a lower peninsula subset file has

an LP prefix (470 rows by 361 columns).

Summary sheets for the several data layers currently in the

system are attached.



MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

LAND COVER

Variable Name: LAND COVER, 1 KM. RES.

Description: Level I (augmented) land cover (U.S. Geological

Survey Professional Paper 964, A Land Use and Land

Cover Classification System for Use with Remote

Sensor Data)

Files: MICOVER

LPCOVER

UPCOVER

Data Source: Visual interpretation of Landsat (satellite)

imagery (1979-82). Custom-enhanced (density-

specified, contrast-stretched reproductions of B/W

positive transparencies), i:i million-scale, false

color composites were utilized.

Categories: i0

Value Description

0

1

2

3

4

5

6

7

8

9

Background and Great Lakes

Urban and Built-Up

Agriculture

Rangeland
Deciduous Forest

Coniferous Forest

Inland Waters

Forested Wetlands

Non-Forested Wetlands

Barren Land



MICHIGAN GEOGRAPHICINFORMATION SYSTEM
Center for Remote Sensing
Michigan State University

SOIL ASSOCIATIONS

Variable Name: SOIL ASSOCIATIONS - 1 KM. RES.

Description: A soil association is a landscape that has a

distinctive proportional pattern of soils. It

consists of several major soils and some minor

soils, and is named for the major soils.

Files: MISOILS

LPSOILS

UPSOILS

Data Source: Michigan State University. 1981. Soil

Association Map of Michigan. Extension Bulletin

E-1550. MSU Cooperative Extension Service and

Agricultural Experiment Station; U.S.D.A., Soil

Conservation Service.

Categories: 81

Value Description Value Description

0 Background and Great Lakes

1 Ontonagon-Rudyard-Pickford

2 Watton-Alstad

3 Iron River-Champion-Gogebic

4 Emmet-Trenary-Bohemian

5 Kalkaska-Keweenaw-Munising

6 Kiva

7 Kawbawgam

8 Longrie-Summerville

9 Emmet-Trenary-Cathro

i0 Iron River-Michigamme-Rock

Land

ii Rudyard-Pickford

12 Angelica-Brimley-Bruce

13 Roscommon-AuGres-Tawas

14 Rubicon

15 Kalkaska-Blue Lake

16 .Kalkaska-Tawas-Carbondale

17 Detour-Johnswood-Longrie

18 Rubicon-Michigamme-Rock Land

19 Roscommon-Tawas-Rubicon

20 Tawas-Carbondale-Greenwood

21 Fluvaquents-Carbondale

22 Kalkaska-Rubicon

23 Leelanau-Emmet-Kalkaska

24 Graycalm-Montcalm

25 Nester-Kawkawlin-Sims

26 Nester-Menominee-Montcalm

27 Mcbride-Montcalm

28 Emmet-Leelanau

29 Grayling-Rubicon

30 Emmet-Onaway
31 Iosco-Allendale-Brevort

32 Mancelona-Gladwin

33 Iosco-Kawkawlin-Sims

34 Hillsdale-Riddles

35 Spinks-Oshtemo-Boyer

36 Schoolcraft-Kalamazoo-Elston

37 Kalamazoo-Oshtemo

38 Tedrow-Granby

39 Brady-Wasepi-Gilford

40 Oakville-Plainfield-Spinks

41 Marlette-Capac

42 Capac-Parkhill

43 Houghton-Palms-Sloan

44 Boyer-Oshtemo-Houghton

45 Boyer-Riddles-Marlette

46 Boyer-Wasepi

47 Houghton-Gilford-Adrian

48 Lenawee-Toledo-Del Rey

49 Tedrow-Tedrow,Loamy-

Selfridge



50 Perrinton-Ithaca

51 Pipestone-Kingsville-

Saugatuck-Wixom
52 Ithaca-Pewamo-Belleville

53 Morley-Glynwood-Blount

54 Boyer-Fox-Sebewa

55 Oshtemo-Brady-Gilford
56 Riddles-Teasdale

57 Miami-Conover-Brookston

58 St. Clair-Nappanee

59 Belleville-Selfridge-Metea

60 Hoytville-Nappanee
61 Kibbie-Colwood

62 Blount-Pewano

63 Oakville-Tedrow-Granby
64 Metamora-Blount-Pewamo

65 Grattan

66 Grattan-Covert-Pipestone

67 Spinks-Perrinton-Ithaca

68 Wixom-Londo-Guelph

69 Tappan-Londo

70 Tappan-Londo-Poseyville

71 Tappan-Belleville-Essexville

72 Lapeer-Hillsdale
73 Sanilac-Bach

74 Shebeon-Kilmanagh

75 Iron River-Baraga-Champion

76 Geogebic-Keweenaw-Kalkaska

77 Amasa-Stambaugh
78 Tula-Pliene

79 Inland Waters

80 No Data



MICHIGAN GEOGRAPHICINFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

SOIL TEXTURE

Variable Name: SOIL ASSNS. AS 18 CLASSES

Description: Texture of dominant soils in soil associations

Files: MISOILI8

Derivation: Recoded from Soil Association Map (MISOILS)

Data Source: Michigan State University. 1981. Soil

Association Map of Michigan. Extension Bulletin

E-1550. MSU Cooperative Extension Service and

Agricultureal Experiment Station; U.S.D.A. Soil
Conservation Service.

Categories: 2O

Value Description

0 Background and Great Lakes
19 Inland Waters

Frigid Temperature Regime*

1 Clayey Soils

2 Loamy Soils

3 Loamy Soils with Organic Soils

4 Loamy Soils Underlain by Sand and Gravel

5 Loamy and Sandy Soils on Bedrock Controlled Uplands

6 Loamy Soils Interspersed with Sandy Soils

7 Sandy Soils

8 Wet Clayey and Loamy Soils

9 Wet Sandy and Organic Soils

Mesic Temperature Regime*
i0

ii

12

13

14

15

16

17

18

Clayey Soils

Wet Clayey Soils

Loamy Soils

Wet Loamy Soils

Sandy Soils

Wet Sandy Soils and Wet Loamy Soils Underlain by Sand
and Gravel

Loamy Soils Underlain by Sand and Gravel

Wet Organic and Loamy Soils
No Data

*Frigid soils have mean annual soil temperatures at 50 cm of less

than 8°C (47°F). Mesic soils have mean annual soil temperatures

at 50 cm of 8°C or higher but lower than 15°C (47-59°F). In both

mesic and frigid soils the difference between mean winter and

mean summer soil temperature is more than 5°C (9°F).



MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

AVERAGE WATER HOLDING CAPACITY

Variable Name: AVERAGE WATER HOLDING CAPACITY:

AVERAGE WATER HOLDING CAPACITY:

AVERAGE WATER HOLDING CAPACITY:

AVERAGE WATER HOLDING CAPACITY:

AVERAGE WATER HOLDING CAPACITY:

1-12 IN.

13-24 IN.

25-36 IN.

37-48 IN.

49-60 IN.

Description: A measure of the ability of a soil layer to hold

free water, estimated as inch/inch and expressed

as a percent.

Files: MIAWCI

MIAWC2

MIAWC3

MIAWC4

MIAWC5

Derivation:

Data Source:

Recoded from Soil Association Map (MISOILS) and

Soil Interpretations Record (National Cooperative

Soil Survey), (Lusch and Enslin, 1984)

Soil Interpretations Record, National Cooperative

Soil Survey, U.S.D.A., Soil Conservation Service.

Lusch, D.P. and W.R. Enslin. 1984.

Microcomputer-Based, Statewide, Digital Land-

Surface Information. Proceedings of PECORA 9,

Spatial Information Technologies for Remote

Sensing Today and Tomorrow, pp. 40-43.

Categories: 12

Value

0

1

2

3

4

5

6

7

8

9

i0

ii

Description

Background and Great Lakes
1-5%

6-10%

11-15%

16-20%

21-25%

26-30%

31-35%

36-40%

41-45%

Inland Waters

No Data



MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

ELEVATION

Variable Name: NOAA DIG. ELEV.DATA: I0 METER RES.

Description: Point elevation data in meters (feet).

Files: LPELEV

Data Source: NOAA 30 arc-second point elevation data, Item T6P-

0050 from the National Geophysical Data Center

(The data were originally derived by the Defense

Mapping Agency from 1° x 2 ° topographic maps

(1:250,000)

Categories: 35 (Point elevation in increments of i0 meters
from 170 to 500 meters).



MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

ASPECT

Variable Name:

Description: Direction of maximum slope.

Files: LPASPECT

Derivation: Transformed from Elevation (LPELEV).

Data Source: NOAA 30 arc-second point elevation data, Item TGP-

0050 from the National Geophysical Data Center.

Categories: i0

Value Direction Anqle

1 N 360 + 22.5

2 NE 45 + 22.5

3 E 90 + 22.5

4 SE 135 + 22.5

5 S 180 + 22.5

6 SW 225 + 22.5

7 W 270 + 22.5

8 NW 315 + 22.5

9 Flat Areas



MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

SLOPE LENGTH

Variable Name:

Description: Length of slope from ridge crest.

Files: LPSLPLEN

Derivation: Transformed from Elevation (LPELEV)

Data Source: NOAA 30 arc-second point elevation data, Item TGP-

0050 from the National Geophysical Data Center.

Categories: 64



MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

POLITICAL DIVISIONS, COUNTY BOUNDARIES

Variable Name: POLITICAL DIVISIONS: COUNTY BOUNDARIES

Description: Boundaries delineating the 83 separate countries.

Files: MICNTY

LPCNTY

UPCNTY

Data Source: U.S. Geological Survey 1° x 2° Quadrangels (United

States Series of Topographic Maps, Scale,

1:250,000)

Categories: 2

Value Description

0 Background and Great Lakes

1 County Boundaries



MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

POLITICAL BOUNDARIES, COUNTIES AS AREAS

Variable Name: POLITICAL DIVISIONS, COUNTIES AS AREAS _

Description: Aerial extent of the individual 83 counties.

Files: LPCNTYA

Data Source: U.S. Geological Survey 1 ° x 2 ° Quadrangles (United

States Series of Topographic Maps, Scale,

1:250,000)

Categories: 84

Value Description

0 Background and

Great Lakes

1 Alcona

2 Alger

3 Allegan

4 Alpena

5 Antrim

6 Arenac

7 Baraga

8 Barry

9 Bay

i0 Benzie

ii Berrien

12 Branch

13 Calhoun

14 Cass

15 Charlevoix

16 Cheboygan

17 Chippewa
18 Clare

19 Clinton

20 Crawford

21 Delta

22 Dickinson

23 Eaton

24 Emmet

25 Genesee

26 Gladwin

27 Gogebic

28 Grand Traverse

29 Gratiot

30 Hillsdale

31 Houghton

32 Huron

33 Ingham

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

5O

51

52

53

54

55

56

57

58

59

6O

61

62

63

64

65

66

67

68

Ionia

Iosco

Iron

Isabella

Jackson

Kalamazoo

Kalkaska

Kent

Keweenaw

Lake

Lapeer
Leelanau

Lenawee

LivingtoD

Luce

Mackinac

Macomb

Manistee

Marquette

Mason

Mecosta

Menominee

Midland

Missaukee

Monroe

Montcalm

Montmorency

Muskegon

Newaygo

Oakland

Oceana

Ogemaw

Ontonagon

Osceola

Oscoda

69

70

71

72

73

74

75

76

77

78

79

8O

81

82

83

Otsego
Ottawa

Presque Isle

Roscommon

Saginaw
St. Clair

St. Joseph
Sanilac

Schoolcraft

Shiawassee

Tuscola

Van Buren

Washtenaw

Wayne
Wexford



MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

MAJOR FOREST COVER TYPES

Variable Name: FOREST SPECIES TYPE: 1 KM

Description: A classification of forest land based upon the

species forming a plurality of live tree stocking.

For presentation of resource data (forest survey)
these types are combined into type groups (major

forest cover types).

Files: MIFOREST

Derivation: Matrix analysis on LAND COVER (MICOVER) and Major

Forest Types (Spencer, 1983)

Data Source: Spencer, John S., Jr. 1983. Michigan's Fourth

Forest Inventory: AREA. Resource Bulletin NC-68,
U.S. Forest Service, North Central Forest

Experiment Station.

Categories: 9

Value Description

0

1

2

3

4

5

6

7

8

Background and Great Lakes

Oak-Hickory

Maple-Birch

Aspen-Birch
Elm-Ash-Cottonwood

Spruce-Fir
White-Red-Jack Pine

Non-Forest Land

Inland Waters



MICHIGAN GEOGRAPHICINFORMATION SYSTEM
Center for Remote Sensing

Michigan State University

GLACIAL DRIFT T_ICKNESS

Variable Name:

Description: Generalized zones, representing depth intervals to

bedrock, of glacial drift.

Files: LPDTHICK

Data Source: Glacial Drift Thickness, Plate 15, Hydrogeologic

Atlas of Michigan, Department of Geology, Western

Michigan University, Kalamazoo, Michigan, 1981.

Categories: 17



MICHIGAN GEOGRAPHICINFORMATION SYSTEM
Center for Remote Sensing

Michigan State University

MAJOR WATERSHEDS

Variable Name:

Description: Major drainage basins of major rivers and
tributaries.

Files: LPWSHED

Data Source: Michigan River Basins: Michigan Geological Survey

Division Map No. 200, Michigan Department of
Natural Resources.

Categories: 43

Value Description

0

1

2

3

4

5

6

7

8

9

i0

Ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3O

31

32

Short Drainage Directly to Great Lakes
Galien

St. Joseph
Maumee (drainage to Maumee River, Ohio)
Raisin

River Rouge
Huron

Grand

Thornapple
Kalamazoo

Black

PawPaw

Red Cedar

Looking Glass

Maple
Flat

Rogue

Muskegon
White

Pere Marquette

Big Sable
Manistee

Betsie

Boardman

Rapid
Jordan

Cheboygan

Thunder Bay
Au Sable

Au Gres

Rifle

Tittabawassee



33

34

35

36

37

38

39

40

41

42

Shiawassee

Flint

Cass

Saginaw

Sevewaing

Pigeon

Pinebog

Black

Belle

Clinton



MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Variable Name:

Description:

Files: LPAQVULN

Data Source:

Categories:

Value

1

2

3

4

Center for Remote Sensing

Michigan State University

AQUIFER VUIRERABILITY

(MDNR Map C-32860)

5

DesGriDtion

Protected Aquifer

Unprotected Aquifer

Unclassified Aquifer
No Data



MICHIGAN GEOGRAPHICINFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

MEAN TEMPERATURE

Description: Mean monthly and annual mean temperature. (°F),

1940-1969.

Data Source:

Categories:

Mean Temperature Maps For the Period 1940-1969,

Supplement B to the Climate of Michigan by

Stations, Michigan Department of Agriculture,

Michigan Wather Service, June 1974.

64 (Temperature intervals with l°F ranges, from

ii to 74°F)

File Description

MTEMPI

MTEMP2

MTEMP3

MTEMP4

MTEMP5

MTEMP6

MTEMP7

MTEMP8

MTEMP9

MTEMPI0

MTEMPII

MTEMPI2

MTEMPI3

January Mean Temperature

February Mean Temperature

March Mean Temperature

April Mean Temperature

May Mean Temperature
June Mean Temperature

July Mean Temperature

August Mean Temperature

September Mean Temperature

October Mean Temperature

November Mean Temperature

December Mean Temperature

Annual Mean Temperature



MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

AVERAGE MINIMUM TEMPERATURE

Description: Monthly and annual average daily-minimum

temperature (OF), 1940-1969.

Data Source: Average Minimum Temperature Maps for the Period

1940-1969, Supplement E to the Climate of Michigan

by Stations, Michigan Department of Agriculture,

Michigan Weather Service, August 1976.

Categories: 65 (Temperature intervals with l°F ranges, from 1

to 64°F)

DMINI

DMIN2

DMIN3
DMIN4

DMIN5

DMIN6

DMIN7

DMIN8

DMIN9

DMINI0

DMINII

DMINI2

DMINT

Description

January Average Daily Minimum Temperature

February Average Daily Minimum Temperature

March Average Daily Minimum Temperature

April Average Daily Minimum Temperature

May Average Daily Minimum Temperature

June Average Daily Minimum Temperature

July Average Daily Minimum Temperature

August Average Daily Minimum Temperature

September Average Daily Minimum Temperature

October Average Daily Minimum Temperature

November Average Daily Minimum Temperature

December Average Daily Minimum Temperature

Annual Average Daily Minimum Temperature



MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

MEAN NUMBEROF DAYS MINIMUM
TEMPERATURE 0OFAND BELOW

Description: Mean monthly and annual mean number of days with

minimum temperatures of 0°F.and below, 1940-1969,

Data Source: Maps of Mean Number of Days Minimum Temperature
0°F and Below For the Period 1940-1969, Supplement

K to the Climate of Michigan by Statistics,

Michigan Department of Agriculture, Michigan

Weather Service, August 1979.

Categories: 16 (Number of days or partial days); Ii (series of

day ranges for cumulative mean annual)

File

MNUL01

MNUL02

MNUL03

MNUL04

MNUL05

MNUL06

MNUNOAN

Description

January, Mean Number of Days Minimum Temperature 0°F

and Below

February, Mean Number of Days Minimum Temperature 0°F
and Below

March, Mean Number of Days Minimum Temperature 0°F and
Below

April, Mean Number of Days Minimum Temperature 0°F and
Below

November, Mean Number of Days Minimum Temperature 0°F

and Below

December, Mean Number of Days Minimum Temperature 0°F

and Below

Annual, Mean Number of Days Minimum Temperature 0°F and

Below



MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

MEAN NUMBEROF DAYS MINIMUM

TEMPERATURE 32 ° AND BELOW

Description: Mean monthly and annual mean number of days with

minimum temperatures of 32°F and below, 1940-1969.

Data Source: Ma_s of Mean Number of Days Minimum Temperature
32VF and Below for the Period 1940-1969,

Supplement J to the Climate of Michigan by

Stations, Michigan Department of Agriculture,

Michigan Weather Service, August 1979.

Categories: 34 (number of days), 11 (series of day ranges for

cumulative mean annual)

File

MINI

MIN2

MIN3

MIN4

MIN5

MIN6

MIN7

MIN8

MIN9

MINI0

MINI1

MINI2

MINAN

Description

January, Mean Number of Days Minimum Temperature 32°F
and Below

February, Mean Number of Days Minimum Temperature 32°F

and Below

March, Mean Number of Days Minimum Temperature 32°F and

Below

April, Mean Number of Days Minimum Temperature 32°F and

Below

May, Mean Number of Days Minimum Temperature 32°F and
Below

June, Mean Number of Days Minimum Temperature 32°F and

Below

July, Mean Number of Days Minimum Temperature 32°F and
Below

August, Mean Number of Days Minimum Temperature 32°F

and Below

September, Mean Number of Days Minimum Temperature 32°F

and Below

October, Mean Number of Days Minimum Temperature 32°F

and Below

November, Mean Number of Days Minimum Temperature 32°F

and Below

December, Mean Number of Days Minimum Temperature 32°F

and Below

Annual, Mean Number of Days Minimum Temperature 32°F

and Below



MICHIGAN GEOGRAPHICINFORMATION SYSTEM
Center for Remote Sensing

Michigan State University

AVERAGE MAXIMUM TEMPERATURE

Description:

Data Source:

Categories:

Monthly and annual average daily-maximum

temperature (OF), 1940-1969.

Average Maximum Temperature Maps for the Period

1940-1969, Supplement D to the Climate of Michigan

by Stations, Michigan Department of Agriculture,

Michigan Weather Service, July 1976.

66 (Temperature intervals with l°F ranges, from
21 to 65UF)

File Description

DMAXTI

DMAXT2

DMAXT3

DMAXT4

DMAXT5

DMAXT6

DMAXT7

DMAXT8

DMAXT9

DMAXTI0

DMAXTII

DMAXTI2

DMAXTAN

January Average Daily Maximum Temperature

February Average Daily Maximum Temperature

March Average Daily Maximum Temperature

April Average Daily Maximum Temperature

May Average Daily Maximum Temperature

June Average Daily Maximum Temperature

July Average Daily Maximum Temperature

August Average Daily Maximum Temperature

September Average Daily Maximum Temperature

October Average Daily Maximum Temperature
November Average Daily Maximum Temperature

December Average Daily Maximum Temperature

Annual Average Daily Maximum Temperature



MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

HIGHWAYS

Variable Name: HWYS

Description: Major highways

Files:

Data Source:

Categories: 7

Value D_scription

0

1

2

3

4

5

6

Background and Great Lakes

0-2000 vehicles/hr

2000-5000 vehicles/hr

5000-10000 vehicles/hr

i0000 and more vehicles/hr

Urban and Built-up Lands

Other Lands/Uses



MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

FEDERAL AND STATE LANDS

Variable Name:

Description:

ADMINISTRATIVE UNITS

Project boundaries, including all ownership
contained within the boundaries, for State and

Federal projects.

Files: MIADMINU

LPADMINU

UPADMINU

Data Source:

Categories: ii

yalue

0

1

2

3

4

5

6

7

8

9

I0

Description

Background and Great Lakes

Predominantly Private Lands

State Forests

State Parks and Recreation Areas

State Game and Wildlife Areas

National Forests

National Parks and Lake Shores

National Wildlife Refuges

State Military Lands

Federal Military Lands

Inland Lakes



Description:

Data Source:

Categories:

File

SNOI

MNDI

MNDI

PERC6

MND6

PERCI2

MNDI2

MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

SNOWFALL STATISTICS

First i-, 3-, 6-, 12- inch depths.

Strommen, N.D. 1968. Michigan Snowfall.

Statisticw; First i-, 30, 6-, 12-Inch Depths,

Michigan Department of Agriculture, Michigan
Weather Service.

varies

DescriDtion

Earliest recorded occurrence of 1-inch Snow Depth

Mean Date of First 1-inch Snow Depth

Mean Date of First 3-inch Snow Depth

Percentage of years during which a 6-inch or greater

snow depth occurred

Mean Date of First 6-inch Snow Depth

Percentage of years during which a 12-inch or greater

snow depth occurred.

Mean date of First 12-inch Snow Depth



Description:

Data Source:

MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

SNOW DEPTHS

Average number of days with a specified snow depth

or more.

Strommen, N.D. 1969. Michigan Snow Depths.

Michigan Department of Agriculture, Michigan

Weather Service.

Categories: 17 (ranges of days)

File Description

SNOCMI

SNOCM6

SNOCMII

SNOCMI6

SNOCM21

SNOCM26

SNOCM31

SNOCM36

SNOMAX

SNO3160

SNO4009

Average Number of Days Per Season with Accumulated Snow

Depth on the Ground of 1 inch or More

Average Number of Days Per Season wlth Accumulated Snow

Depth on the Ground of 6 inch or More

Average Number of Days Per Season with Accumulated Snow

Depth on the Ground of ii inch or More

Average Number of Days Per Season wlth Accumulated Snow

Depth on the Ground of 16 inch or More

Average Number of Days Per Season with Accumulated Snow

Depth on the Ground of 21 inch or More

Average Number of Days Per Season wlth Accumulated Snow

Depth on the Ground of 26 inch or More

Average Number of Days Per Season wlth Accumulated Snow

Depth on the Ground of 31 inch or More

Average Number of Days Per Season wlth Accumulated Snow

Depth on the Ground of 36 inch or More

Maximum Depth of Snow on the Ground

Mean Annual Snowfall in Inches

Average Annual Snowfall in Inches



MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

MAXIMUM SNOWFALL

Description: Maximum monthly and annual maximum snowfall.

Data Source: 'Maps of Maximum Monthly and Annual Maximum

Snowfall, Supplement G to the Climate of Michigan

by Stations, Michigan Department of Agriculture,

Michigan Weather Service, August, 1979.

Categories: 17 (ranges of 10 inches)

File Description

MXSNO 1

MXSNO2

MXSNO3

MXSNO4

MXSNO5

MXSNO9

MXSNOI0

MXSNOII

MXSNOI2

MSXNOAN

January Maximum Montly Snowfall

February Maximum Montly Snowfall

March Maximum Montly Snowfall

April Maximum Montly Snowfall

May Maximum Montly Snowfall

September Maximum Montly Snowfall

October Maximum Montly Snowfall

November Maximum Montly Snowfall

December Maximum Montly Snowfall

Annual Maximum Montly Snowfall



MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

MEAN SNOWFALL

Description:

Data Source:

Mean monthly and annual mean snowfall (inches).

Maps of mean monthly and annual mean snowfall,

Supplement C to the Climate of Michigan by

Stations, Michigan Department of Agriculture,

Michigan Weather Service, March, 1975.

Categories: 14 (ranges of snowfall)

File Description

MSNOI

MSNO2

MSNO3

MSNO4

MSNO5

MSNO9

MSNOI0

MSNOII

MSNOI2

MSNOAN

January Mean Snowfall

February Mean Snowfall
March Mean Snowfall

April Mean Snowfall

May Mean Snowfall

September Mean Snowfall
October Mean Snowfall

November Mean Snowfall

December Mean Snowfall

Annual Mean Snowfall



MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

MEAN NUMBER OF DAYS .i0 INCH OR MORE PRECIPITATION

Description: Mean monthly and annual mean number of days with

.i0 inch or more precipitation.

Data Source: Maps of Mean Monthly and Annual Number of days .i0

inch or more Precipitation, Supplement L to the

Climate of Michigan by Stations, Michigan

Department of Agriculture, Michigan Weather

Service, December, 1979.

Categories: 10 (number of days or ranges of days)

File Description

MNMOPCl

MNMOPC2

MNMOPC3

MNMOPC4

MNMOPC5

MNMOPC6

MNMOPC7

MNMOPC8

MNMOPC9

MNMOPCI0

MNMOPCII

MNMOPCI2

MNMOPCAN

January, Mean number of Days .I0 Inch or More
Precipitation

February, Mean number of Days .i0 Inch or More

Precipitation

March, Mean number of Days .i0 Inch or More

Precipitation

April, Mean number of Days .i0 Inch or More

Precipitation

May, Mean number of Days .i0 Inch or More Precipitation

June, Mean number of Days .i0 Inch or More

Precipitation

July, Mean number of Days .i0 Inch or More

Precipitation

August, Mean number of Days .I0 Inch or More

Precipitation

September, Mean number of Days .I0 Inch or More

Precipitation

October, Mean number of Days .i0 Inch or More

Precipitation

November, Mean number of Days .i0 Inch or More

Precipitation

December, Mean number of Days .i0 Inch or More

Precipitation

Annual, Mean number of Days .i0 Inch or More

Precipitation



Description:

Data Source:

Categories:

File

MPRECI

MPREC2

MPREC3

MPREC4

MPREC5

MPREC6

MPREC7

MPREC8

MPREC9

MPRECI0

MPRECII

MPRECI2

MPRECAN

MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

MEAN PRECIPITATION

Mean monthly and annual precipitation (inches),

1940-1969.

Maps of Mean Monthly and Annual Precipitation, for
the period 1940-1969, Supplement A to the Climate

of Michigan by Stations, Michigan Department of

Agriculture, Michigan Weather Service, June 1974.

ii (ranges of precipitation, in inches)

Description

January Mean Precipitation

February Mean Precipitation
March Mean Precipitation

April Mean Precipitation

May Mean Precipitation
June Mean Precipitation

July Mean Precipitation

August Mean Precipitation

September Mean Precipitation
October Mean Precipitation

November Mean Precipitation

December Mean Precipitation

Annual Mean Precipitation



MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

MEAN HEATING DEGREE DAYS

Description: Mean monthly and annual mean heating degree days

(departure of daily mean temperature from 65 ° F)
for the period 1940-1969.

Data Source: Maps of Mean Monthly and Annual Heating Degree

Days for the period 1940-1969, Supplement F to the

Climate of Michigan by Stations, Michigan

Department of Agriculture, Michigan Weather
Service, May, 1979.

Categories: 33 (ranges of heating degree days)

File Description

HEAT1

HEAT2

HEAT3

HEAT4

HEAT5

HEAT6

HEAT7

HEAT8

HEAT9

HEAT10

HEAT11

HEAT12

HEATAN

January Mean Heating Degree Days

February Mean Heating Degree Days

March Mean Heating Degree Days

April Mean Heating Degree Days

May Mean Heating Degree Days

June Mean Heating Degree Days

July Mean Heating Degree Days

August Mean Heating Degree Days

September Mean Heating Degree Days

October Mean Heating Degree Days

November Mean Heating Degree Days

December Mean Heating Degree Days

Annual Mean Heating Degree Days



MICHIGAN GEOGRAPHICINFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

MEAN NUMBER OF DAYS MAXIMUM TEMPERATURE 32°F AND BELOW

Description: Mean monthly and annual mean number of days with

maximum temperatures of 32°F and below for the

period 1940-1969.

Data Source: Maps of Mean Monthly and Annual Number of Days

Maximum Temperature 32°F and Below for the period

1940-1969, Supplement I to the Climate of Michigan

by Stations, Michigan Department of Agriculture,

Michigan Weather Service, August, 1979.

Categories: 29 (number of days), 8 (series of day ranges for

cumulative mean annual)

File Description

MAXTMPI January, Mean Number of Days Maximum Temperature 32°F
and Below

MAXTMP2 February, Mean Number of Days Maximum Temperature 32°F
and Below

MAXTMP3 March, Mean Number of Days Maximum Temperature 32°F and
Below

MAXTMP4 April, Mean Number of Days Maximum Temperature 32°F and
Below

MAXTMP5 May, Mean Number of Days Maximum Temperature 32°F and

Below

MAXTMP6 June, Mean Number of Days Maximum Temperature 32°F and
Below

MAXTMP7 July, Mean Number of Days Maximum Temperature 32°F and

Below

MAXTMP8 August, Mean Number of Days Maximum Temperature 32°F
and Below

MAXTMP9 September, Mean Number of Days Maximum Temperature 32°F
and Below

MAXTMPI0 October, Mean Number of Days Maximum Temperature 32°F
and Below

MAXTMPII November, Mean Number of Days Maximum Temperature 32°F

and Below

MAXTMPI2 December, Mean Number of Days Maximum Temperature 32°F
and Below

MAXTMPAN Annual, Mean Number of Days Maximum Temperature 32°F
and Below



MICHIGAN GEOGRAPHIC INFORMATION SYSTEM

Center for Remote Sensing

Michigan State University

MEAN NUMBER OF DAYS MAXIMUM TEMPERATURE 90°F AND ABOVE

Description: Mean monthly and annual mean number of days with

maximum temperatures of 90°F and above, 1940-1969.

Data Source: Ma_s of Mean Number of Days Maximum Temperature
90VF and Above (1940-1969), Supplement H to the

Climate of Michigan by Stations, Michigan

Department of Agriculture, Michigan Weather

Service, August, 1979.

Categories: i0 (number of days), 6 (series of day ranges for

cumulative mean annual)

File

MXOV91

MXOV92

MXOV93

MXOV94

MXOV95

MXOV96

Description

May, Mean Number of Days Maximum Temperature 90°F and

Above

June, Mean Number of Days Maximum Temperature 90°F and

Above

July, Mean Number of Days Maximum Temperature 90°F and

Above

August, Mean Number of Days Maximum Temperature 90°F
and Above

September, Mean Number of Days Maximum Temperature 90°F

and Above

Annual, Mean Number of Days Maximum Temperature 90°F

and Above






